Using Pre-Training Can Improve Model Robustness and Uncertainty

Reproduced by: Xingchen Liu Rongyu Wang 12/06/2019

Hendrycks, Dan & Lee, Kimin & Mazeika, Mantas. (2019). Using Pre-Training Can Improve Model Robustness and Uncertainty. CoRR. https://dblp.org/rec/bib/journals/corr/abs-1901-09960

Background

- Pre-training is widely used for deep convolutional neural networks
 - Application: "Pre-train then Tune" paradigm
 - Research: create "universal representations"
- **Doubts** on Pre-training
 - He et al. [1] argued pre-training shows no performance benefits for traditional models or large tasks.
 - Lin et al. [2] found that pre-training doesn't have advantages when giving sufficient time for training, even for the tuning for extremely small datasets.

Motivation

• To demonstrate the effectiveness of pre-training on several aspects.

- To prove that pre-training enhances model uncertainty estimates in
 - Out-of-Distribution detection
 - calibration

Related Work

• Pre-training

- Improves generalization for tasks with small datasets, including transfer learning[3][4], and tasks with significant variation[5].
- Used in large tasks such as Microsoft COCO[1]
 but no accuracy gains in performance[2][15]

Related Work

• Uncertainty

- To detect out-of-distribution samples, use the maximum value of a classifier's softmax distribution[18]
- Mahalanobis distance-based scores that characterize out-of-distribution samples using hidden features[9]
- Using GAN[21] to generate out-of-distribution samples
- Applying non-specific, real, and diverse outlier images or text instead improves out-of-distribution detection performance and calibration[22]
- Contemporary networks can easily become miscalibrated without additional regularization[23]

Target Task

Show the performance of pre-training in:

• Uncertainty

- Out-of-Distribution Detection
- \circ Calibration

Data Summary

- Downsampled(64 x 64) ImageNet[10] for pre-training
- CIFAR-10, CIFAR-100 and Tiny ImageNet datasets[24]
 without 200 overlapping Tiny ImageNet classes from
 Downsampled ImageNet

Implementation

 Use 40-2 Wide ResNets trained using SGD with Nesterov momentum and a cosine learning rate.

$$\eta_t = \eta_{min}^i + \frac{1}{2} (\eta_{max}^i - \eta_{min}^i) (1 + \cos(\frac{T_{cur}}{T_i}\pi)),$$

- Pre-training: 100 epochs on Downsampled ImageNet, fine-tuned for 10 epochs for CIFAR and 20 for Tiny ImageNet without dropout (learning rate of 0.001).
- Baseline: 100 epochs with a dropout rate of 0.3.

Basic model

```
class WideResNet(nn.Module):
   def init (self, depth, num classes, widen factor=1, dropRate=0.0):
        super(WideResNet, self). init ()
       nChannels = [16, 16 * widen factor, 32 * widen factor, 64 * widen factor]
       assert ((depth - 4) \% 6 == 0)
       n = (depth - 4) // 6
       block = BasicBlock
       # 1st conv before any network block
        self.conv1 = nn.Conv2d(3, nChannels[0], kernel size=3, stride=1,
                               padding=1, bias=False)
       # 1st block
       self.block1 = NetworkBlock(n, nChannels[0], nChannels[1], block, 1, dropRate)
       # 2nd block
       self.block2 = NetworkBlock(n, nChannels[1], nChannels[2], block, 2, dropRate)
       # 3rd block
        self.block3 = NetworkBlock(n, nChannels[2], nChannels[3], block, 2, dropRate)
       # global average pooling and classifier
        self.bn1 = nn.BatchNorm2d(nChannels[3])
        self.relu = nn.ReLU(inplace=True)
       self.fc = nn.Linear(nChannels[3], num classes)
       self.nChannels = nChannels[3]
```

Train from scratch

```
# Train network on CIFAR10
train_data, test_data = load_cifar10_data()
model = WideResNet(40, 10, 2, 0.3)
model.cuda()
total_steps = 100 * len(train_data)
optimizer = torch.optim.SGD(model.parameters(), 0.1, momentum=0.9, nesterov=True)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda= lambda step:
cosine_lr(step, total_steps, 1, 10e-5))
save_name = "CIFAR10_baseline.pt"
train_process(model,train_data, test_data, optimizer, scheduler, 100,save_name)
```

Pre-train then tune

```
# Pre-train on ImageNet Downsample
torch.cuda.manual_seed(1)
train_data, test_data = load_imagenetds_data()
model = WideResNet(40, 10, 2, 0.3)
model.cuda()
total_steps = 100 * len(train_data)
optimizer = torch.optim.SGD(model.parameters(), 0.1, momentum=0.9, nesterov=True)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda= lambda step:
save_name = "Tiny_ImageNet_baseline.pt"
train process(model,train_data, test_data, optimizer, scheduler, 100, save_name)
```

```
# Tune on CIFAR10
train_data, test_data = load_cifar10_data()
model = WideResNet(40, 1000, 2, 0)
model.cuda()
model.load_state_dict(torch.load("saved_model/pretrained_model.pt"))
total_steps = 100 * len(train_data)
optimizer = torch.optim.SGD(model.parameters(), 0.001, momentum=0.9, nesterov=True)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda= lambda step: cosine_lr(step, total_steps, 1, 10e-5))
save_name = "CIFAR10_pretrained.pt"
train_process(model,train_data, test_data, optimizer, scheduler, 10, save_name)
```

Out-of-Distribution Detection

- In distribution data: test dataset
- Out-of-distribution data: Gaussian noise, textures etc.
- Use the maximum softmax probabilities to score anomalies
- Evaluation metrics: AUROC (the Area Under the Receiver Operating Characteristic curve), AUPR (the Area Under the Precision-Recall Curve)

```
def get measures(out score, in score):
    out_score = np.array(out score)
    in score = np.array(in score)
    examples = np.concatenate((out score, in score), axis=None)
    labels = np.zeros(len(examples), dtype=np.int32)
    labels[:len(out score)] += 1
    auroc = sk.roc auc score(labels, examples)
    aupr = sk.average precision score(labels, examples)
    return auroc, aupr
def get results (ood loader, auroc results, aupr results):
    aurocs, auprs = [], []
   for i in range(5):
        out score = get scores(ood loader)
        auroc, aupr = get measures(out score, in score)
        aurocs.append(auroc)
       auprs.append(aupr)
    auroc = np.mean(aurocs)
    aupr = np.mean(auprs)
    auroc results.append(auroc*100)
    aupr results.append(aupr*100)
   print("AUROC:",100*auroc)
    print("AUPR:",100*aupr)
   print("\n\n")
                       Calculate AUROC and AUPR
```

```
12
```

Results in Paper

Out-of-distribution Detection

	AU	ROC	AUPR		
	Normal	Normal Pre-Train		Pre-Train	
CIFAR-10	91.5	94.5	63.4	73.5	
CIFAR-100	69.4	83.1	29.7	52.7	
Tiny ImageNet	71.8	73.9	30.8	31.0	

Out-of-distribution Detection for CIFAR10

CIFAR10	AUROC		AUPR	
	Normal Pre-training N		Normal	Pre-training
Gaussian	89.32	95.44	43.44	64.38
Rademacher	89.04	94.61	42.79	59.47
Blob	94.56	97.15	68.11	83.67
Textures	87.98	93.74	55.84	70.85
SVHN	91.77	95.65	63.47	76.77
CIFAR100	87.42	90.49	54.76	65.30
Mean	90.02	94.49	54.80	69.94

Out-of-distribution Detection for CIFAR100

CIFAR100	AUROC		AUPR		
	Normal Pre-training I		Normal	Pre-training	
Gaussian	49.67	96.61	14.78	79.95	
Rademacher	46.75	97.66	14.13	87.54	
Blob	85.89	89.34	45.02	55.96	
Textures	73.29	79.65	33.03	44.03	
SVHN	74.51	79.21	32.27	48.42	
CIFAR10	75.66	75.21	34.71	35.52	
Mean	67.63	86.28	28.99	58.57	

Out-of-distribution Detection for Tiny ImageNet

Tiny ImageNet	AUROC		AUPR		
	Normal Pre-training I		Normal	Pre-training	
Gaussian	64.82	78.01	18.68	26.65	
Rademacher	67.48	73.42	19.86	23.17	
Blob	64.84	60.47	18.95	17.14	
Textures	68.99	72.25	29.02	29.99	
SVHN	86.66	89.24	51.39	57.69	
Mean	70.58	74.68	27.58	30.93	

AUROC results

AUPR Results

Calibration

• According to methods of Chawla *et al*[22], adopt RMS and MAD to measure the calibration of a classifier

RMS:
$$\sqrt{\sum_{i=1}^{b} \frac{|B_i|}{n}} \left(\frac{1}{|B_i|} \sum_{k \in B_i} \mathbb{1}(y_k = \widehat{y}_k) - \frac{1}{|B_i|} \sum_{k \in B_i} c_k \right)^2$$
.
MAD: $\sum_{i=1}^{b} \frac{|B_i|}{n} \left| \frac{1}{|B_i|} \sum_{k \in B_i} \mathbb{1}(y_k = \widehat{y}_k) - \frac{1}{|B_i|} \sum_{k \in B_i} c_k \right|$.
Soft F1 score: $\frac{c_a^{\mathsf{T}} m}{\mathbb{1}^{\mathsf{T}}(c_a + m)/2}$.

• Compare results of using pre-training and not using pre-training.

Results in paper

In-distribution Calibration

	RMS Error		MAD Error	
	Normal Pre-Train		Normal Pre-Trai	
CIFAR-10	6.4	2.9	2.9	1.2
CIFAR-100	13.3	3.6	10.3	2.5

SVHN

svhn_transform = trn.Compose([trn.Resize(dim), trn.ToTensor(), trn.Normalize(mean,std)])
svhn_data = SVHN(root="data/SVHN", download = True, split="test", transform=svhn_transform)
svhn_loader = torch.utils.data.DataLoader(svhn_data, batch_size=200, shuffle=True)
print('SVHN Calibration')
set results(subp_leader_surge_results_supp_results)

```
get_results(svhn_loader,auroc_results, aupr_results)
```

Texture

```
texture_transform = trn.Compose([trn.Resize(dim), trn.CenterCrop(dim),trn.ToTensor(), trn.Normalize(measure_data = dset.ImageFolder(root="data/dtd/images",transform=texture_transform)
texture loader = torch.utils.data.DataLoader(texture data, batch size=200, shuffle=True,num workers=4,
```

print('Texture Detection')

print('Mean Results')

```
get results(texture loader,auroc results, aupr results)
```

auroc_mean = sum(auroc_results) / len(auroc_results)
aupr mean = sum(aupr results) / len(aupr results)

```
# CIFAR
if name == "CIFAR10":
    cifar_data = dset.CIFAR100('data/CIFAR100', train=False, transform=test_transform)
    cifar_loader = torch.utils.data.DataLoader(cifar_data, batch_size=200, shuffle=True)
    print('CIFAR Detection')
    get_results(cifar_loader,auroc_results, aupr_results)

if name == "CIFAR100":
    cifar_data = dset.CIFAR10('data/CIFAR10', train=False, transform=test_transform)
    cifar_loader = torch.utils.data.DataLoader(cifar_data, batch_size=200, shuffle=True)
    print('CIFAR Detection')
    get_results(cifar_loader,auroc_results, aupr_results)

# Mean Result
print(auroc_results)
```

Out-of-distribution data

```
# Gaussian Noise
gaussian targets = torch.ones(ood num * 5)
m = normal.Normal(0.5, 0.5)
gaussian ood = m.sample((ood num * 5,3,dim,dim))
gaussian ood = torch.utils.data.TensorDataset(gaussian ood, gaussian targets)
gaussian loader = torch.utils.data.DataLoader(gaussian ood, batch size=200,shuffle=True)
print('Gaussian Noise Detection')
get results(gaussian loader, auroc results, aupr results)
# Rademacher Noise
rademacher targets = torch.ones(ood num * 5)
m = bernoulli.Bernoulli(0.5)
rademacher ood = m.sample((ood num * 5, 3, dim, dim))
rademacher data = torch.utils.data.TensorDataset(rademacher ood, rademacher targets)
rademacher loader = torch.utils.data.DataLoader(rademacher data, batch size=200, shuffle=True)
print('Rademacher Noise Detection')
get results(rademacher loader, auroc results, aupr results)
```

Out-of-distribution data

```
def rms mad error(confidence, correct, error name, bin size):
  index = np.argsort(confidence)
  confidence = confidence[index]
  correct = correct[index]
 num bins = len(confidence) // bin size
 bins = [i * bin size for i in range(num bins)]
 error count = 0
  num samples = len(confidence)
  for i in range(num bins):
    if i<num bins-1:
      start,end = bins[i],bins[i+1]
    if i == num bins-1:
      start,end = bins[i],len(confidence)
    bin conf = confidence[start:end]
    bin corr = correct[start:end]
    bin size = len(bin conf)
    if bin size > 0:
     diff = np.abs(np.nanmean(bin conf) - np.nanmean(bin corr))
      if error name == 'rms':
        error count += bin size / num samples * np.square(diff)
      elif error name == 'mad':
        error count += bin size / num samples * diff
  if error name == 'rms':
    error_count = np.sqrt(error count)
  return error count
```

Calculate RMS, MAD, Sf1

```
def SoftF(confidence, correct):
    recall = 1 - correct
    precision = 1 - confidence
    num = (precision * recall).sum()
    denom = (precision + recall).sum()/2
    sf1 = num / denom
    return sf1
```

Calculate RMS, MAD, Sf1

Calibration for CIFAR10

CIFAR10	RMS Error		MAD Error		Soft F1 Score	
	Normal	Pre-training	Normal	Pre-training	Normal	Pre-training
In-Distribution	6.39	2.88	2.87	1.24	27.83	29.65
Gaussian	33.02	28.17	18.09	14.06	15.44	34.63
Rademacher	33.29	29.63	18.20	14.73	14.61	30.12
Blob	26.76	22.54	14.94	11.73	36.69	48.46
Textures	24.83	23.18	16.02	13.46	29.88	38.08
SVHN	25.26	23.30	15.37	12.74	34.01	42.58
CIFAR100	24.80	22.14	16.26	13.82	28.31	35.69
Mean	24.91	21.69	14.54	11.69	26.68	37.03

25

Calibration for CIFAR100

CIFAR100	R	RMS Error	MA	MAD Error		Soft F1 Score	
	Normal	Pre-training	Normal	Pre-training	Normal	Pre-training	
In-Distribution	13.32	3.63	10.26	2.51	42.44	46.33	
Gaussian	28.25	8.48	24.30	5.70	30.90	64.29	
Rademacher	28.11	7.49	24.52	5.10	30.16	65.71	
Blob	22.62	10.13	17.95	7.31	50.35	59.27	
Textures	23.40	10.81	20.11	8.76	44.24	54.32	
SVHN	24.06	10.23	24.06	8.60	44.04	54.67	
CIFAR10	23.64	11.48	19.91	9.60	44.85	52.12	
Mean	23.34	8.89	19.61	6.80	41.00	56.67	

26

RMS Error

MAD Error

Soft F1 Score

Conclusion and Future Work

Conclusion

- The benefits of pre-training extend beyond merely quick convergence, as previously thought, since pre-training can improve model uncertainty.
 - Pre-trained representations directly translate to improvements in predictive uncertainty estimates.
 - Training from scratch can only reach the same performance as training with pre-training on unperturbed data.

Conclusion and Future Work

Future Work

- Figure out the reasons for unexpected lowerer performance of pre-trained models
 - OOD detection(Tiny-ImageNet) on Blob
- Reproduce the part of evaluation on robustness of models.
- Validate the effects of pre-training on other datasets.
- Compare the effects of different strategy for pre-training
- Some work could specialize pre-training for these downstream tasks.

Job Split

Xingchen Liu: Train baseline network from scratch, OOD detection

Clare Wang: Pre-train network and tune, Calibration

References

[1] He, K., Girshick, R., and Dollar, P. Rethinking ImageNet pre-training. arXiv, 2018.

- [2] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C. L., and Dollar, P. Microsoft COCO: Common objects in context. ECCV, 2014.
- [3] Agrawal, P., Girshick, R., and Malik, J. Analyzing the performance of multilayer neural networks for object recognition. ECCV, 2014.
- [4] Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. How transferable are features in deep neural networks? NeurIPS, 2014.
- [5] Huh, M., Agrawal, P., and Efros, A. A. What makes ImageNet good for transfer learning? arXiv, 2016.
- [6] Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. Towards deep learning models resistant to adversarial attacks. ICLR, 2018.
- [7] Zhang, Z. and Sabuncu, M. Generalized cross entropy loss for training deep neural networks with noisy labels. NeurIPS, 2018.
- [8] Hendrycks, D. and Gimpel, K. A baseline for detecting misclassified and out-of-distribution examples in neural networks. ICLR, 2017b.

[9] Lee, K., Lee, K., Lee, H., and Shin, J. A simple unified framework for detecting out-of-distribution samples and adversarial attacks. NeurIPS, 2018b.

References

[10] Chrabaszcz, P., Loshchilov, I., and Hutter, F. A downsampled variant of ImageNet as an alternative to the CIFAR datasets. arXiv, 2017.

[11] Dong, Q., Gong, S., and Zhu, X. Imbalanced deep learning by minority class incremental rectification. IEEE TPAMI, 2018.

[12] Japkowicz, N. The class imbalance problem: Significance and strategies. In ICAI, 2000.

[13] Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. SMOTE: synthetic minority over- sampling technique. JAIR, 2002.

[14] Huang, C., Li, Y., Change Loy, C., and Tang, X. Learning deep representation for imbalanced classification. In CVPR, 2016.

[15] Sun, C., Shrivastava, A., Singh, S., and Gupta, A. Revisiting unreasonable effectiveness of data in deep learning era. ICCV, 2017.

[16] Sukhbaatar, S., Bruna, J., Paluri, M., Bourdev, L., and Fergus, R. Training convolutional networks with noisy labels. ICLR Workshop, 2014.

[17] Patrini, G., Rozza, A., Menon, A., Nock, R., and Qu, L. Making deep neural networks robust to label noise: a loss correction approach. CVPR, 2017.

[18] Hendrycks, D., Mazeika, M., Wilson, D., and Gimpel, K. Using trusted data to train deep networks on labels corrupted by severe noise. NeurIPS, 2018.

References

[19]He, H. and Garcia, E. A. Learning from imbalanced data. TKDE, 2008.

[20] Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. SMOTE: synthetic minority over- sampling technique. JAIR, 2002.

[21] Lee, K., Lee, H., Lee, K., and Shin, J. Training confidence- calibrated classifiers for detecting out-of-distribution samples. ICLR, 2018a.

[22] Hendrycks, D., Mazeika, M., and Dietterich, T. Deep anomaly detection with outlier exposure. ICLR, 2019.

[23] Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. On calibration of modern neural networks. International Conference on Machine Learning, 2017.

[24] Johnson et al. Tiny ImageNet visual recognition challenge. URL

https://tiny-imagenet. herokuapp.com.