Loss Landscape

1ral Nets



https://github.com/qiyanjun/deep2reproduce/tree/master/2019Fall

= Understand the effect of training parameters and network architectures on

loss landscapes and the shape of minimizers
= Find the effect of loss landscapes on generalization

= Does loss landscape show significant non-convexity?

(a) without skip connections (b) with skip connections

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The proposed filter
normalization scheme is used to enable comparisons of sharpness/flatness between the two figures.



Trainability of neural nets is highly dependent on:

» Network architecture

»  Optimizer

» Variable initialization and etc.
Globally optimal or near-optimal solutions can be found by common
optimization methods for restricted network classes!2 3. 4]
Relationship between sharpness/flatness of local minima and generalization
ability:

= Small-batch SGD produces flat minimals that generalize well

» Large-batch SGD produces sharp minimals and has poor generalization



= 1-Dimensional Linear Interpolation by Goodfellow et al. [5]
O(a) =(1—a)f+ab’

fla) = L(6(a))

Contour Plots & Random Directions
f(a, B) = L(0" + ad + Bn)

* Explore the trajectories of minimization methods



1D Linear Interpolation

* hard to visualize non-convexities

* does not consider batch normalization

Contour Plots & Random Directions:

= 2D case but computational burden is large causes low-resolution

» Fails to capture the intrinsic geometry of loss surfaces

Scale invariance in (rectified) network weights

» Prevent meaningful comparisons between plots of different networks

Sharp minimizers or flat minimizers generalize better?

» The difference between sharp and flat minimizers

=  How to visualize?
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Filter-Wise Normalization

» Produce a random Gaussian direction vector d d . < 0,

) 5J ||d”|| 1655

= dis dimensional compatible with ¢

» Normalize each filter in d to have the same norm of corresponding filter
o 0

= Will be applied to convolutional layers and fully connected layers

= ps.Jjmeans jth filter in ith layer of d

Explore the relationship between generalization and
flatness/sharpness

Explore different architecture effect



Implementation

= Prepare pretrained models with different parameters will be used
» Load models and extract parameters
= Setup the direction file and the image file in .h5 file

= Filter normaliza
d, w (direction, weights):

d.mul_(w.norm()/(d.norm() + )

= Calculate loss values and accuracies: cross entropy

= Plot figures



= Dataset

= Cifar 10

» Pretrained Models
= VGG-9
= ResNet 56

= ResNet 56 (no shortcut)
Batch size 128, 8192
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VGGY, batch size=8192, weight
decay=0.0005, filter normalization
test error = 10.47%

VGG9, batch size=8192, weight
decay=0.0005, no normalization
test error=11.34%

Filter-wise Normalization is more accurate.
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Weight decay=0

Experiment
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Sharpness has no relationship with generalization.

Small batch lead to better generalization.
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Resnet56(no shortcut), batch size=128
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Conclusio

« Filter-wise Normalization works well to show intrinsic loss
landscape

- Network with smaller batch size can generalize better

» Sharpness has no relationship with generalization

« Shortcut connections have a dramatic effect on the loss surface

= Shortcut connections prevent the transition to chaotic behavior

= Future works:
= Get plots on higher resolution

= Find a simpler and faster method to do loss visualization
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Yu Du:

Load Data
1D Interpolation Graph
Training

Jupyter Notebook Wrap-up

Haochuan Zhang;:
Model Data Extraction
Filter-wise Normalization
2D Contour Map

Training
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