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Motivation

Inspired by the phenomenon catastrophic forgetting:
Phenomenon that neural network forgets previously learned information 

when trained for the new task

Hypothesis: shift on input distribution (e.g.: lack of common factors in input 
lead to different convergent solutions)

Applied to this current work:
Catastrophic forgetting can cause a problem with mini batch SGD optimization 

since each batch can be regarded similarly to the new task and SGD optimization is a 
situation of continuous learning



Background and Definition

Forgetting event

Unforgettable examples
Learned at some point and never misclassified

Example is misclassified after being correctly classified

Learning event
Example is classified correctly for the first time



Related Work

Curriculum Learning
Learning with increased difficulty helps minimize task loss
Safe to remove unforgettable examples

Deep Generalization
Does not depend on complexity of the model
Overparameterized model can reach low test error
Generalization is maintained when removing substantial amount of training 

examples 



Claim/Target Task

Goal 1: 
Gain insight into the optimization process and the training examples 

Goal 2: 
Determine if forgetting statistics can be used to identify important samples and outliers



An Intuitive Figure Showing Why Claim

Unforgettable
Clear features

High contrast with sky

Forgettable
Less visible features

Small contrast with background



Proposed Solution

Train classifier on dataset when sampled in current mini-batch

Sort dataset examples based on number of forgetting samples

MNIST, permuted MNIST and CIFAR-10

Empirical Analysis:



Implementation

Number of forgetting events

Forgetting by chance
Analyze distribution of forgetting events

Histogram of forgetting events of MNIST, permuted MNIST and CIFAR-10



Implementation

First learning events
Order of examples during learning

Detection of noisy examples
Atypical characteristics

Distribution of forgetting events in CIFAR-10 when labels are changed



Implementation

Removing most forgettable events

Generalization performance of ResNet18 Increasing number of elements are removed from training set 



Load and train MNIST data

Step 2: Train MNIST with parameters below

Step 1: Load MNIST 



Load and train MNIST data

Within train():
Permutate samples;
On each minibatch, get indices of each samples (more on next):

Step 3: Call train() on each epoch



Load and train MNIST data

Get accuracy and for each sample in mini batch and compute statistics (see next):

Compute outputs, loss, and get predicted class



Load and train MNIST data

Append statistics (loss, accuracy and margin) to example stats and write to pkl file



Load and train CIFAR10 data
Step 1: CIFAR10 was first trained with no sorting, no sample removal, no data augmentation and no cutout

For each event, calculate loss and predict output

Updata accuracy, loss stats of each event and save it in example_stats



Sort dataset based on forgettable events
Step 1: Use accuracy value after training the CIFAR data to compute whether event is learned or 
unlearned or forgettable

- Learned event: event with accuracy of 1
- Unlearned event: event with accuracy of 0
- Forgettable event: event with accuracy dropping from 1 to 0



Sort dataset based on forgettable events
Step 2: Sort the example_stats to rank the sample from the highest forgetting count to the lowest forgetting 
count  

Step 3: Save the sorted file with a stat of sample ID and sample values 



Train CIFAR10 with random data removal

Random removal: permute the 
training data and remove samples

Call the example_stats for accuracy



Train CIFAR10 with sorted data removal

Sorted removal: Used the sorted file 
output and remove the samples with 
the highest forgettable events by 
using ordered_indx



Load and train CIFAR10 data with noisy labels

For each label, introduce noise by changing to another label

Compute number of labels to change



Graph examples with noisy labels
Get indices of examples with noisy labels from file

Get index of noisy sample from ordered example

Re-sort elements in from statistics



Experimental Results

Number of forgetting events vs. number of samples in MNIST (regular and log respectively)



Experimental Results

TRAINING DETAILS

CIFAR10 dataset trained with ResNet18

Training iteration was reduced from 200 
epochs in the paper to 50 epochs due to 
computational cost. 

After 50 iterations, highest test accuracy 
was 77.45%

Selected removed: samples were sorted based on forgettable events and most forgettable events were removed first 
Random removed: randomly selected samples to be removed

Note: removing most forgettable examples first does not hurt performance as much as randomly removed samples



Experimental Results

Examples with noisy labels are more likely to be forgotten

TRAINING DETAILS

CIFAR10 dataset trained with 
ResNet18

Training with 100 epochs 
(~1 hour on Colab)

Randomly selected 20% of examples 
to change labels



Experimental Analysis and Conclusion and Future Work

Examples with noisy labels and uncommon features are the most forgettable

There exists a large set of unforgettable examples

Removing a large fraction of forgettable examples does not compromise 
performance of the neural network 

The theory behind forgetting is needed to be further investigated

Understand forgetting phenomena within other forms of learning (e.g speech or 
text)

Future work:



Work Split
Marco

Loaded MNIST data
Trained CIFAR10 data to generate figure that compare forgettable events 
between normal CIFAR10 and noisy CIFAR10
Made slides for paper review

Oom
Used the loaded MNIST data to generate figure showing forgettable events of  
each sample in the data
Loaded and trained CIFAR10 dataset
Generated the figure showing test accuracy with and without forgettable samples 
removed
Made slides for the result section
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