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Background

From information bottleneck theory of deep learning, we get three 
specific claims:
1. Deep networks undergo two distinct phases consisting of an

initial fitting phase and a subsequent compression phase
2.   The compression phase is causally related to the excellent 

generalization performance of deep networks 
3.  The compression phase occurs due to the diffusion-like behavior of 

stochastic gradient descent.



Motivation
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● Our paper shows that none of these claims hold true in the general 
case.

● Deep neural networks are the tool of choice for real-world tasks 
ranging from visual object recognition to unsupervised learning and 
reinforcement learning. These practical successes have spawned many 
attempts to explain the performance of deep learning systems. 



Related Work
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Information theory

Based on the probability mass function of each source symbol to be 
communicated, the Shannon entropy H, in units of bits (per symbol), is 
given by

where pi is the probability of occurrence of the i-th possible value of the 
source symbol.

https://en.wikipedia.org/wiki/Probability_mass_function
https://en.wikipedia.org/wiki/Entropy_(information_theory)


Related Work
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Deep learning 

There is a close connection between machine learning and
compression: a system that predicts the posterior probabilities of a
sequence given its entire history can be used for optimal data
compression (by using arithmetic coding on the output distribution)
while an optimal compressor can be used for prediction (by finding the
symbol that compresses best, given the previous history). This
equivalence has been used as a justification for using data compression
as a benchmark for "general intelligence."

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Posterior_probabilities
https://en.wikipedia.org/wiki/Arithmetic_coding


Claim / Target Task
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1. The information plane trajectory is predominantly influenced by
the choice of neural activation functions.

2. There is no evident causal connection between compression and
generalization.

3. The compression phase, when it exists, does not arise from
stochasticity in training.

4. When an input domain consists of a subset of task-relevant and
task-irrelevant information, hidden representations do compress
the task-irrelevant information. Further, the compression happens
concurrently with the fitting process rather than during a
subsequent compression period.



An Intuitive Figure Showing WHY Claim
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Proposed Solution

1. Use ReLU instead of the activation function tanh to observe the
information plane dynamics.

2. Explore the connection between generalization and compression.

3. Research whether stochasticity is important for compression in training.

4. Research on the extent to which information related to tasks is
compressed.



Implementation
I: Compression and Neural Nonlinearities



Data Summary
I: Compression and Neural Nonlinearities



Experimental Results
I: Compression and Neural Nonlinearities

Except for the final layer of 2 sigmoidal neurons:
• The mutual information with the input monotonically increases

in all ReLU layers
• No compression phase is visible in the ReLU layers any more.



Experimental Results

MNIST Dataset:
• 60000 samples each with 784 features
• 10 categories output
• 7 fully connected hidden layers of width 1024-25-25-20-10
• SGD with batch size of 128

I: Compression and Neural Nonlinearities

Our results:



Experimental Analysis

• The choice of nonlinearity substantively affects the dynamics in the
information plane.

• The double-sided saturation of tanh is the key to the original result.

I: Compression and Neural Nonlinearities



Implementation
II: Information Plane Dynamics in Deep Linear Networks



Experimental Results
II: Information Plane Dynamics in Deep Linear Networks

Linear networks:

Over-training:

• No compression is seen in both
information planes.

• Both networks exhibit similar
information dynamics, but
yield different generalization
performance.



Experimental Results
II: Information Plane Dynamics in Deep Linear Networks

Nonlinear networks:

• The tanh networks show substantial compression, despite exhibiting 
modest overtraining.

• However, it did not show a good generalization performance.



Experimental Analysis

• This establishes dissociation between behavior in the information
plane and generalization dynamics: networks that compress may or
may not generalize well, and networks that do not compress may or
may not generalize well.

• Generalization performance can be acceptable without any
compression phase.

• Networks with similar dynamics on the information plane may have
different generalization performance.

II: Information Plane Dynamics in Deep Linear Networks



Implementation
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• Stochastic gradient descent: it learns from a fixed-size dataset,
and updates weights by repeatedly sampling a single example from the
dataset and calculating the gradient of the error with respect to that
single sample.

• Batch gradient descent: it learns from a fixed-size dataset, and
updates weights using the gradient of the total error across all
examples. Crucially, it has no randomness or diffusion-like behavior
in its updates.

III: Compression in BGD and SGD



Experimental Results
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III: Compression in BGD and SGD

(A) ReLU network trained with SGD                          (C)  ReLU network trained with BGD
(B)  tanh network trained with SGD (D)  tanh network trained 
with BGD

• Both random and non-random training procedures show similar
information plane dynamics.

• It shows robust compression in tanh networks for both methods.

A                                B                                                C                                D



Experimental Analysis
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• Randomness in the training process does not appear to contribute
substantially to compression of information about the input.

• This finding is consistent with the view presented in Section I that
compression arises predominantly from the double saturating
nonlinearity.

III: Compression in BGD and SGD



Implementation
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IV: Simultaneous Fitting and Compression

● The input X is divided into a set of task-relevant inputs Xrel and a
set of task-irrelevant inputs Xirrel, and alter network so that the
weights to the task-irrelevant inputs are all zero.

● The inputs Xirrel contribute only noise, while the Xrel contain signal.
We then calculate the information plane dynamics for the whole
layer, and for the task-relevant and task-irrelevant inputs
separately.



Experimental Results and Analysis
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IV: Simultaneous Fitting and Compression



Our Comments
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Architecture: 20-10

Architecture:512-10

● When the network architecture is simple, the dynamics of information 
plane show no compression phase for both ReLU and tanh activation 
function. 
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Our Comments

● Sigmoid is a double-sided activation function, but the dynamics of 
information plane doesn’t show compression. We doubt that the 
compression is due to the double-saturating activation function. 



Conclusion and Future Work

Conclusion:
● To prove dynamical compression in information plane maybe not a 

general characteristic of deep network learning
● Double-saturating nonlinearities contribute to compression, but single-

sided saturating nonlinearities such as ReLUs are generally not helpful
to compress

● Doubt with the causal relationship between compression and 
generalization

Future Work
● Sigmoid and tanh are both double-sided saturation function. But they 

have different results.  What properties decide the compression phase?  
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Responsibilities
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● Yusheng Jiang: Section 3 and 4

● Zhidan Luo: Section 1 and 2

● Siyuan Liu: Section 2 and 3
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