UVA CS 6316: Machine Learning : 2019 Fall Course Project: Deep2Reproduce @ https://github.com/qiyanjun/deep2reproduce/tree/master/2019Fall

TOWARDS REVERSE-ENGINEERING BLACK-BOX NEURAL NETWORKS (Seong Joon Oh, Max Augustin, Bernt Schiele, Mario Fritz)

CS6316 ML Final Project Team Taiwan Hannah Chen, James Ku, Li-Pang Huang 12/06/2019

Black-box models usually hide internal states on purpose:

- 1. Protecting intellectual properties (IP)
- 2. Covering privacy-sensitive training data

Black-box models usually hide internal states on purpose:

- 1. Protecting intellectual properties (IP)
- 2. Covering privacy-sensitive training data

Why hiding the information?

- 1. Preventing the model from adversarial attacks
- 2. Protecting privacy data, such as faces

In order to **increase the chance of protecting the model** from being attacked, we need to gain more knowledge on black-box models.

In order to **increase the chance of protecting the model** from being attacked, we need to gain more knowledge on black-box models.

Double-sided blade: Disclosing the hidden detail may make the model much easier to be attacked by adversaries

- 1. Model attributes:
 - a. architecture (non-linear activation)
 - b. optimisation process (SGD or ADAM)
 - c. training data

- 2. Metamodel:
 - Takes models as input and returns the corresponding model attributes as output
- 3. Meta-training set:
 - a diverse set of white-box models with different model attributes

Background

A standard supervised learning task applied over models

- 1. Collect meta-training set
- 2. Train metamodel by using meta-training set
- 3. Predict attributes for black-box models

Related Work on Extracting Model Information

- Model extraction via querying ML APIs
 - (Tramer et al., 2016): reconstruct the exact model parameters
 - (Papernot et al., 2017): build a local avatar model
- Extracting information from the training data
 - (Ateniese et al., 2015) build a meta-classifier to obtain statistical information about the training set
 - (Shokri et al., 2017) proposed membership inference attack that can determine if a given data sample is part of the training data

Attacking Black-box Models Using Extracted Information

- Adversarial image perturbations (AIPs): small imperceptible perturbations over the input that fool the target model
- Approaches:
 - Gradient / saliency map attacks
 - Problem --> requires millions of queries to find a single AIP
 - Avatar approach: train a local white box model similar to the target model
 - Exploit transferability of adversarial examples that generated for one model to attack other models

Claim / Target Task

- Attributes of neural networks can be exposed from a sequence of queries
- Revealed internal information helps generate more effective adversarial examples against the black box model

An Intuitive Figure Showing WHY Claim

Collect Meta-training set

Train Metamodel

Query Black-box Model

Predict Black-box Model Attributes

Train A Local Model using Predicted Attributes

Attack Target Model

Proposed Solution

METAMODELS

- Classifier of classifiers
- Uses model f as black box
- Submits n query inputs to f
- Takes corresponding model outputs as input
- Returns predicted attributes as output

Figure 1: Overview of our approach.

Preparing traning data

MNIST-NETS

- 12 attributes
- 18,144,000 combinations

Sample 10000

pruned low-performance classifiers (validation accuracy< 98%)

Table 1: MNIST classifier attributes. *Italicised* attributes are derived from other attributes.

	Code	Attribute	Values		
Architecture	act	Activation	ReLU, PReLU, ELU, Tanh		
	drop	Dropout	Yes, No		
	pool	Max pooling	Yes, No		
	ks	Conv ker. size	3, 5		
	#conv	#Conv layers	2, 3, 4		
	#fc	#FC layers	2, 3, 4		
	#par	#Parameters	$2^{14}, \cdots, 2^{21}$		
	ens	Ensemble	Yes, No		
pt.	alg	Algorithm	SGD, ADAM, RMSprop		
Ō	bs	Batch size	64, 128, 256		
ata	split	Data split	All ₀ , Half _{0/1} , Quarter _{0/1/2/3}		
Ď	size	Data size	All, Half, Quarter		

KENNEN-O: REASON OVER OUTPUT

- Submits a fixed query of images to f as inputs (Fixed across training and testing)
- Takes the output from f and predicts the 12 attributes

KENNEN-I: CRAFT INPUT

- Can only predict a single attribute at a time
- Crafts an input that drives f to leak internal information
- Limited predictable

$$\min_{x: \text{ image } f \sim \mathcal{F}} \mathbb{E} \left[\mathcal{L} \left(f(x), y^a \right) \right]$$

KENNEN-IO: COMBINED APPROACH

- Overcomes the drawbacks of kennen-i: single attribute prediction
- Combine kennen-o and kennen-i approaches (Input generator + output interpreter)
- Support optimization of multiple query inputs

$$\min_{[x^i]_{i=1}^n: \text{ images } \theta} \min_{\theta} \mathbb{E}_{f \sim \mathcal{F}} \left[\sum_{a=1}^{12} \mathcal{L} \left(m_{\theta}^a \left([f(x^i)]_{i=1}^n \right), y^a \right) \right]$$

Experimental Results

100 queries are used for every methods, except for kennen-i, which uses a single query

		architecture					optim		data					
Method	Output	act	drop	pool	ks	#conv	#fc	#par	ens	alg	bs	size	split	avg
Chance	-	25.0	50.0	50.0	50.0	33.3	33.3	12.5	50.0	33.3	33.3	33.3	14.3	34.9
kennen-o	prob	80.6	94.6	94.9	84.6	67.1	77.3	41.7	54.0	71.8	50.4	73.8	90.0	73.4
kennen-o	ranking	63.7	93.8	90.8	80.0	63.0	73.7	44.1	62.4	65.3	47.0	66.2	86.6	69.7
kennen-o	bottom-1	48.6	80.0	73.6	64.0	48.9	63.1	28.7	52.8	53.6	41.9	45.9	51.4	54.4
kennen-o	top-1	31.2	56.9	58.8	49.9	38.9	33.7	19.6	50.0	36.1	35.3	33.3	30.7	39.5
kennen-i	top-1	43.5	77.0	94.8	88.5	54.5	41.0	32.3	46.5	45.7	37.0	42.6	29.3	52.7
kennen-io	score	88.4	95.8	99.5	97.7	80.3	80.2	45.2	60.2	79.3	54.3	84.8	95.6	80.1

Comparison of metamodel methods

- kennen-io gives the best performance with an avg. accuracy of 80.1%
- kennen-i has relatively low performance, but it only relies on single query
- bottom-1 outputs contain much more information than do the top-1 outputs

Output representations from the black-box model:

- "prob": vector of probabilities for each digit class
- "ranking": a sorted list of digits according to their likelihood
- "top-1": most likely digit
- "bottom-1": least likely digit

Factor Analysis on kennen-o

- Diminishing return in larger size of training set, but the performance still continues to improve
- Average performance saturates after \sim 500 queries, but \sim 100 queries is

Reverse Engineering & Attacking ImageNet Classifiers

- Metamodel strengthens the transferability based attack
- AIPs transfer better within the architecture family than across

	Target family								
Gen	S	V	В	R	D				
Clean	38	32	28	30	29				
S	64	49	45	39	35				
V	62	96	96	57	52				
В	50	85	95	47	44				
R	64	72	78	87	77				
D	58	63	70	76	90				
Ens	70	93	93	75	80				

Transferability of adversarial examples within and across families (metric: misclassification rate)

Metamodels Enables More Effective Attacks

- AIPs generated for metamodel's predicted family model is more effective than pure black-box attack
- It almost reach the performance of the case when the family is known

Scenario	Generating nets	MC(%)
White box	Single white box	100.0
Family black box	GT family	86.2
Black box whitened	Predicted family	85.7
Black box	Multiple families	82.2

Black-box ImageNet classifier misclassi- fication rates (MC) for different approaches

Conclusion and Future Work

- Investigated types of internal information can be extracted from querying
- 2. Proposed novel metamodel methods
- 3. Analyze the impact of different factors on metamodel
- 4. They showed that reverse-engineering enables more effective attacks

References

- Florian Tramer, Fan Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. Stealing machine learning models via prediction apis. In USENIX, 2016.
- Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Ananthram Swami. Practical black-box attacks against deep learning systems using adversarial examples. In ASIACCS, 2017.
- Giuseppe Ateniese, Giovanni Felici, Liugi V. Mancini, Angelo Spognardi, Antonio Villani, and Domenico Vitali. Hacking smart machines with smarter ones: How to extract meaningful data from machine learning classifiers. In IJSN, 2015.
- Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks against machine learning models. In SP, 2017.