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Why hiding the information?
1. Preventing the model from adversarial attacks
2. Protecting privacy data, such as faces
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In order to increase the chance of protecting the model from
being attacked, we need to gain more knowledge on black-box
models.

Double-sided blade:
Disclosing the hidden detail may make the model much easier
to be attacked by adversaries



ackgrour

1. Model attributes:
a. architecture (non-linear activation)
b. optimisation process (SGD or ADAM)

c. training data



Background

2. Metamodel:
- Takes models as input and returns the corresponding
model attributes as output

3. Meta-training set:
- a diverse set of white-box models with different model

attributes



Background

A standard supervised learning task applied over models
1. Collect meta-training set
2. Train metamodel by using meta-training set

3. Predict attributes for black-box models



Related Work on Extracting Model Information

e Model extraction via querying ML APls
o (Tramer et al., 2016): reconstruct the exact model parameters
o (Papernot et al., 2017): build a local avatar model
e Extracting information from the training data
o (Ateniese et al., 2015) build a meta-classifier to obtain statistical information
about the training set
o (Shokri et al., 2017) proposed membership inference attack that can determine

if a given data sample is part of the training data



Attacking Black-box Models Using Extracted
Information

« Adversarial image perturbations (AlIPs): small imperceptible perturbations over

the input that fool the target model

« Approaches:

Gradient / saliency map attacks
* Problem --> requires millions of queries to find a single AIP
Avatar approach: train a local white box model similar to the target model

Exploit transferability of adversarial examples that generated for one model to

attack other models



Claim / Target Task

e Attributes of neural networks can be exposed from a sequence of queries
e Revealed internal information helps generate more effective adversarial

examples against the black box model
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An Intuitive Figure Showing WHY Claim

Collect Meta-training set Train Metamodel Query Black-box Model

Train A Local Model using

Predict Black-box Model Attributes Predicted Attributes

Attack Target Model
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Proposed Solution



METAMODELS

Attribute
Metamodel _ .
\ prediction

Query input Query output

Model f [f ()],

- Classifier of classifiers /

- Uses model f as black box

- Submits n query inputs to f [y

- Takes corresponding model Figure 1: Overview of our approach.
outputs as input

- Returns predicted attributes as

output



Preparing traning data by
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- 1 2 attrIbUteS Table 1: MNIST classifier attributes. [talicised attributes are

) . derived from other attributes.
- 18,144,000 combinations

Code  Attribute Values
Samp|e 10000 act Activation RelLU, PReL.U, ELU, Tanh
o drop  Dropout Yes, No
. 5 pool Maxpooling  Yes, No
pruned low-performance classifiers 8 ks Convker size 3.5
% #conv  #Conv layers  2,3,4
(validation accuracy< 98%) < #c #FClayers — 2,3,4
#par  #Parameters 214 ... 921
ens Ensemble Yes, No
8, alg Algorithm SGD, ADAM, RMSprop
o bs Batch size 64, 128, 256
£ split  Data split All, Halfy 1, Quarterg /; /55
a size Data size All, Half, Quarter




" KENNEN-

Submits a fixed query of
images to f as inputs

(Fixed across training

and testing)
Takes the output from
) Query output Attribute
and predicts the 12 (=), prediction
attributes
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KENNEN-I:

« Can only predict a single

attribute at a time

- B
.... d
« Crafts an input that .
. . %
drives f to leak internal
information Query input Query output _ Attribute
T f(x) prediction

« Limited predictable

classes
min  E_[£(f(x),y")]
x:image f~F
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KENNEN-IO: COMBINED APPROACH

Overcomes the drawbacks of kennen-1i: single attribute prediction
Combine kennen-o and kennen-1i approaches
(Input generator + output interpreter)

Support optimization of multiple query inputs
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Experimental Results

100 queries are used for every methods, except for

kennen-i, which uses a single query

architecture optim data
Method Output act drop pool ks #conv #fc #par ens alg bs size split  avg
Chance - 25.0 50.0 50.0 50.0 33.3 33.3 125 50.0 333 333 333 143 349
kennen-o  prob 80.6 94.6 949 846 67.1 77.3 41.7 540 71.8 504 738 90.0 734
kennen-o ranking 63.7 93.8 90.8 80.0 63.0 73.7 44.1 624 653 47.0 66.2 866 69.7
kennen-o bottom-1  48.6 80.0 73.6 64.0 48.9 63.1 28.7 52.8 53.6 41.9 459 514 544

kennen-o  top-l 31.2 569 58.8 499 389 33.7 19.6

50.0 36.1 35.3 333 30.7 39.5

kennen-i  top-1 435 77.0 94.8 88.5 545 41.0 323

46.5 457 37.0 426 293 527

kennen-io score 88.4 95.8 99.5 97.7 80.3 80.2 45.2

60.2 793 543 848 956 80.1

Comparison of metamodel methods

e kennen-io gives the best performance with an
avg. accuracy of 80.1%

e kennen-1i has relatively low performance, but it
only relies on single query

e bottom-1 outputs contain much more information
than do the top-1 outputs

Output representations from the black-box model:
e “prob”: vector of probabilities for each digit
class
e “ranking”: a sorted list of digits according
to their likelihood
e  “top-1": most likely digit
e “pbottom-1”: least likely digit
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Factor An

« Diminishing return in larger size of training set, but the performance still
continues to improve

« Average performance saturates after ~ 500 queries, but ~100 queries is

good enough
100 - s 100 w— AVERAGE
- — 7 - et 1""1T == arch/act
£ £ 80{ £ 80y ,,{f___;',-lw-’-'“'”'—'“"" == = arch/drop
E E g | « arch/pool
3 3 60}/ 3 60 = arch/ks
4 s ] ww arch/#fc
A «= = arch/#conv
g % 40 ’ % 40 ««« arch/#par
E E 20 -~ | " E 20 ww arch/ens
S ] A -] ~w opt/alg
2 2 ‘ 2
. J = = opt/bs
0 0 00 13 3456 7 8 9 data/split

0 1k 2k 3k 4k 5k 0 250 500 750 1000
Size of training set Number of queries Top-k rank output ~ = datasize



Reverse Engineeri

Target family
Gen S V. B R D

e Metamodel strengthens the

transferability based attack

S

e AlPs transfer better within the \
B

architecture family than across R

D
Ens

Transferability of adversarial
examples within and across families
(metric: misclassification rate)



Metamodels Enables More Effective Attacks

e AlPs generated for metamodel’s predicted family model is more effective
than pure black-box attack

e |t almost reach the performance of the case when the family is known

Scenario Generating nets MC(%)
White box Single white box  100.0
Family black box GT family 86.2
Black box whitened Predicted family 85.7
Black box Multiple families  82.2

Black-box ImageNet classifier misclassi- fication rates (MC)
for different approaches



L

Conclusion a

1. Investigated types of internal information can be extracted
from querying

2. Proposed novel metamodel methods

3. Analyze the impact of different factors on metamodel

4. They showed that reverse-engineering enables more effective

attacks

23



- References

e Florian Tramer, Fan Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. Stealing machine
learning models via prediction apis. In USENIX, 2016.

e Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Ananthram
Swami. Practical black-box attacks against deep learning systems using adversarial examples. In
ASIACCS, 2017.

e Giuseppe Ateniese, Giovanni Felici, Liugi V. Mancini, Angelo Spognardi, Antonio Villani, and
Domenico Vitali. Hacking smart machines with smarter ones: How to extract meaningful data from
machine learning classifiers. In IJSN, 2015.

e Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference at-
tacks against machine learning models. In SP, 2017.

24



