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Motivation
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● Recurrent neural networks are proven highly effective for 
language-modeling tasks, but explicitly impose a chain-structure on data 
that is at odds with the non-sequential structure of language.
○ Language has a latent tree-like structure (Chomsky 1956, Dehaene et 

al. 2015)
● Constituency trees - constituent is a group of words that function as a 

single unit within a hierarchy.

Figure: Demonstrating the non-sequential structure of language
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Background

● Ongoing area of research for several decades - to model a parse tree, 
represent a context-free grammar, given a corpus or any natural language 
dataset

● Success with this task can be used for various goals: NER, Co-reference 
resolution, parsing responding to questions, forming semantic 
representations of the language

● Also an area of interest of the authors: grammar induction 
(unsupervised modeling of the parse tree and grammar). Ordered 
Neurons may apply in the future?



Related Work
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● Socher et al. (2010); Alvarez-Melis & Jaakkola (2016); Zhou et al. (2017); 
Zhang et al. (2015) use supervised learning on expert-labeled treebanks 
for predicting parse trees.

● Socher et al. (2013) and Tai et al. (2015) explicitly model the 
tree-structure using parsing information from an external parser.

● Bowman et al. (2016) exploited guidance from a supervised parser (Klein 
& Manning, 2003) in order to train a stack-augmented neural network.



Claim / Target Task
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The authors claim that their variant of the LSTM architecture, 
“ON-LSTM”, can achieve SotA performance in building syntactic parse 
trees/modeling CFGs, which can, in turn, lead to success with the 
previously mentioned downstream tasks, like semantic parsing or 
named-entity-recognition.

They claim to be able to do so by performing only fairly minor changes to 
the original LSTM architecture, and demonstrate their results on a 
commonly used dataset (Penn Treebank)



An Intuitive Figure Showing WHY Claim
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Proposed Solution

Upshot:  High-ranking neurons will store long-term information which is kept 

for a large number of steps, while low-ranking neurons will store short-term 

information that can be rapidly forgotten

● Development of new activation function “cumulative softmax” which is 

capable of inducing the desired tree structure

● Use of this “cumax” activation to produce a new forget & input gate, which 

in turn are used to produce cell state (different architecture from typical 

LSTM)

● Result: Cumax weighting causes indices with “lower indices” to be 

forgotten and/or replaced by fresh input - a tree structure forms over time

 



Implementation (1)

ON-LSTM (ordered-neuron LSTM): uses similar architecture to the 

standard LSTM
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Implementation (2)
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Implementation (3)

We introduce a new activation function:

Where cumsum represents the cumulative sum. 
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Implementation (4)

cumax(·) enforces ordered 

forget/write operation
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Implementation (5)

We introduce this activation function to 
enforce an order to the update frequency 
on master forget gate and master input 
gates:
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Implementation (6)
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Integration



Data Summary

• Authors tested primarily using the WSJ10 dataset

• Dataset is from the 1990’s, originally speech-to-text 

• Included in Penn Treebank dataset (PTB) available in NLTK

• Input: raw text (unlabeled, some transformations like UNKs)

• Output: manipulated parse tree constructed by experts in PTB 

dataset, built from original WSJ10 set, some minor transformations 

performed by author

• Original tree is compared to cell-state output to determine 

accuracy, rather than the hidden state of LSTM
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Experiments

● Language modeling
● Unsupervised Constituency Parsing
● Syntactic Evaluation
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Experimental Results (1)



Experimental Results (2)
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Experimental Results (3)



Experimental Analysis

• Not SotA for language modeling, but is close 

• Achieves SotA performance on unsupervised constituency parsing

• Is weaker than standard LSTM in syntactic evaluation in short term 

dependencies, but stronger in long-term
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Conclusion and Future Work

● Proposed ordered neurons, a novel inductive bias for RNNs. Based on this idea, we 
propose a novel recurrent unit, the ON-LSTM, which includes a new gating 
mechanism and a new activation function cumax(·)

● The model performance on unsupervised constituency parsing shows that the 
ON-LSTM induces the latent structure of natural language in a way that is coherent 
with human expert annotation.

● The inductive bias also enables ON-LSTM to achieve good performance on 
language modeling, long-term dependency, and logical inference tasks.
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Code contributions

Our code is primarily in the following files:
● ordered_neuron_model.py - We wrote the model from scratch here. Also 

contains an undocumented loss function class that we converted to 
Tensorflow from the author’s codebase but did not work.

● main.py - Contains our main training, saving, configuration, and testing 
procedures

● test_phrase_grammar.py - Author’s testing code which re-used. Heavy 
modifications to get it to work in our codebase and to strip out all pytorch 
components.

● config.yaml - Config file
● We are not using the exact same code/different loss function as the paper. 

Therefore, we don’t expect the exact same results. Our primary hope was 
to achieve somewhat reasonable results on the constituency parsing task 
that could demonstrate the author’s purpose.
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Running Code

To run, please use “main.py”

You can toggled between train or test mode 
with the boolean variable at the top. Test 
mode will try to load the model. Model is too 
large to include in code submit. Please 
inquire separately if you need our finished 
model.
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Training Results
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Language Output
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Tree Intersections
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Tree Intersections

- Visibly increased precision and recall 
results from sample outputs from 12/6 
presentation after training for another day

- Where precision is the fraction of 
“correctly matched unsupervised tree 
‘branches’” in the model’s output against 
the total model’s output

- And recall is the fraction of “correct 
matched unsupervised tree ‘branches’” by 
the total number of possible correct 
matches 28



William:
● Built data preprocessing tools
● Some testing code
● Slides
Andrew:
● Built model construction & training code
● Some testing code
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