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Motivation
─ To expand upon Generative Adversarial Network (GAN) success 

in the creation of novel images that emulate distinct periods or 
styles

─ To use deep learning to create non-derivative art from given 
examples
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GAN Background
─ 2014: GANs were first proposed by Goodfellow et al.
─ Reformulated known concepts into minimax-based network

─ 2014 – present: GAN research is shown to have applications in 
Deep Vision for generating realistic images, but also becomes 
popular in adversarial defense

─ DCGAN (Radford et al., ICLR 2016) introduced deep learning to 
GANS with great success on attribute arithmetic and sample-to-
sample transition (and 4900 citations to date)

─ Some argue that GANS produce the most representative samples 
among generative networks, but this is hard to quantify
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CAN Background
─ Computable Creativity researchers have started examining 

GANs to learn to control the networks and create unique, 
interesting images

─ “Arousal potential” – properties of stimulus patterns that induce 
an excited state (D. E. Berlyne)
─ For aesthetics, significant properties are the “collative variables” 

(novelty, suprisingness, complexity, ambiguity, and puzzlingness)

─ Progression of art is driven by playing the arousal potential
─ Update style enough to be different and new, but with the 

same understanding of technique that drove the artist to make 
good art
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Related Work
─ (2014) Goodfellow et al. demonstrated and formalized GAN 

concept

─ (2016) DCGAN implements GAN using a Deep Convolutional 
Network

─ (2016) Wu et al. use GAN to create 3-D objects from images

─ (2017) Antipov et al. modify photos by aging human subjects

─ (2019) Karras et al. build StyleGAN, allowing for detailed and 
controlled synthesis of faces

─ (2019) Yu and Canales use Long Short-Term Memory GAN to 
write melody from provided lyrics
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Claim/Target Task
─ To discriminate between real and fake artwork, and classify 

artwork by genre

─ To produce images that qualify as art, given relevant training 
data

─ To emulate the artistic intent without being stylistically 
derivative

─ To achieve these metrics on a set of human judges
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Figure showing WHY claim

Images created by art-DCGAN by Robbie Barrat – the images are in line with 
portrait techniques used 1600-1800 (with some variation), akin to mimicry as 

they lack the intentional response to contextualized understanding and emotion
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Proposed Solution
─ Modify the discriminator to perform a k-way loss classification 

for each of the k categories of art, in addition to the original GAN 
objective of determining the validity of the presented sample

─ Modify the loss function of the network to prioritize the creative 
potential (specifically the “arousal potential”)
─ Append “style classification” and “style ambiguity” loss
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Implementation
─ Similar to Deep Convolutional GANs (DCGANs)

─ Generator CNN
─ Sampled (Gaussian) random noise is upsampled into a feature set
─ Six fractional-stride convolutional layers
─ Final reduction layer into image
─ Batch norm on non-Input/Output layers
─ Real/fake loss function of binary cross-entropy
─ Only half – see GAN formulation

─ Style Ambiguity loss used a categorical cross-entropy mixed with 
uniform distribution to produce tendency toward ambiguous class 
values
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Implementation
─ Similar to Deep Convolutional GANs (DCGANs)

─Discriminator CNN
─ Six Convolutional/LeakyReLU Layer Pairs create feature map
─ First head converts map to probability of image being real with a fully 

connected layer
─ Second head produces class probabilities from map with 3 fully 

connected layers
─ Real/fake loss function of binary cross-entropy
─ Only half – see GAN formulation

─ Classification loss using categorical cross-entropy (ish)
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Implementation
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Data Summary
─ Wikiart dataset
─ 81,449 paintings from 1,119 artists
─ Categorized into 25 genres
─ Freely available

─ Used to train both proposed CAN and reference DCGAN 
networks 
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Experimental Results
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64x64 Art-Trained DCGAN 



Experimental Results
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256x256 Art-Trained DCGAN 



Experimental Results
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CAN-produced images: Top ranked by humans



Experimental Results
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CAN-produced images: Lowest ranked by humans



Experimental Analysis
─Survey experiments to determine:
─ Computer vs. Human created
─ Artistic quality
─ Novelty and aesthetic appeal

─ Found:
─ CAN outperforms DCGAN in “human or computer” (75% vs 65% 

think human-made)
─ CAN found to have metrics of artistic merit on par with human-made 

art
─ Addition of style ambiguity loss to the generator improves the novelty 

and aesthetic appeal 
─ 59% think CAN is more novel
─ 60% think CAN is more aesthetically appealing

17



On the Reproduction of Results
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─ Implementing a GAN is difficult
─ Building two networks where one encapsulates the other, then 

alternately training just the inner model (discriminator) or the super-
model (generator and discriminator combined)

─ Implementing a CAN is harder
─ Custom Loss Functions
─ Multi-class dataset

─ Keras can only do so much to hide Tensorflow
─ spent multiple days resolving Tensorflow errors with code based on 

Keras-supplied examples
─ required switching versions of Tensorflow twice



GAN Building
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─ Batch Norm
─ Lots of opinions on worth, lots of results
─ Seems like having is better than not

─ Layer Specs
─ Tanh generator output
─ LeakyReLu works well, ReLu can work for generator inner layers
─ Fractional convolutions for upsampling, convolutions for downsampling
─ No pooling layers

─Training
─ ADAM
─ Soft labels
─ Separate batches of training and testing data
─ Non-saturating game

For more: https://github.com/soumith/ganhacks, Goodfellow NIPS 2016 Tutorial, DCGAN Paper

https://github.com/soumith/ganhacks


Lessons Learned
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─ A lot about Keras and Tensorflow

─ For unfamiliar structures, start with a simpler, working model 
before getting complex
─ i.e. basic GAN -> style class GAN -> CAN
─ Get the guts working, then build out features
─ Code-a-bit, test-a-bit for model building

─ How to clean and implement a public dataset
─ Used the cs-chen/ArtGAN’s Github labeled repo of varying image sizes 
─ Cropped and resized to 256x256 input size

─ How to batch the input 
─ Necessary for GAN training
─ I also ran out of memory – size of dataset necessitated batched testing too



CAN: Conclusion and Future Work
─ CAN effectively classifies style while creating artistic images 

that deviate from any one movement 

─ System has concept of style, but lacks the depth of semantic 
understanding of art and misses the meaning behind artistic 
movements and human subject matter

─ Still, CAN outperforms contemporary art datasets on some of the 
survey metrics
─ Leaves open for more research into creating more meaningful works 

and examining the perceived qualities of these products
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