
Parameter-Efficient Transfer
Learning for NLP

Reproduced By:

Kallie Whritenour & Stephanie Schoch
1

N. Houlsby et al., "Parameter-Efficient
Transfer Learning for NLP," arXiv
preprint arXiv:1902.00751, 2019.

UVA CS 6316: Machine Learning : 2019 Fall
Course Project: Deep2Reproduce @
https://github.com/qiyanjun/deep2reproduce/tree/master/2019Fall

https://github.com/qiyanjun/deep2reproduce/tree/master/2019Fall

Background on Transfer Learning

● “Transfer learning and domain adaptation refer to the situation

where what has been learned in one setting … is exploited to

improve generalization in another setting.” [2]

● Common transfer learning techniques in NLP:
○ Feature-based transfer:

■ Real-valued embedding vectors (at word, sentence, or paragraph level) are pre-

trained and fed to custom downstream models.

○ Fine-tuning:
■ Pre-trained network weights are copied and tuned on a downstream task

● Original parameters are adjusted for each new task

■ Better performance and more parameter efficient than feature-based transfer

(Howard & Ruder, 2018)

● Fine-tuning with lower layers of a network shared between tasks: increases

parameter efficiency

BERT: Transformer Architecture

3

• BERT: Vaswani et al. (2017)
– Transformer network

– Trained on large text corpora

with unsupervised loss

– SOTA: text classification &

extractive question answering

Motivation for Paper

4

● Limitations of Related Work:
○ Other approaches, like Multi-Task Learning (Caruana, 1997) requires access to all

tasks during training.

○ Fine-tuning large pre-trained models for transfer learning in NLP is effective but

parameter inefficient.
■ New sets of weights are required for each task (limited parameter

efficiency/compactness)

■ Feature-based transfer is even more inefficient.

● Goal:
○ Build a system that performs well on all tasks in an online setting, without

training all model parameters for each new task.
■ Online setting: tasks arrive in a stream

● Potential Applications/Impact:
○ Cloud services: many tasks arrive from customers in a sequence

Claims

• Argue: Fine-tuning large pre-trained models (i.e., BERT) for many

downstream tasks is parameter inefficient
– Parameter efficient solution would involve sharing between tasks

• Proposed: Transfer with adapter modules
– Adapter Modules: New modules added between layers of a pre-trained network

• New function is defined with parameters copied from pre-training, small

number of parameters are added to the model per task

– More parameter efficient with minimal performance tradeoff

• Original network parameters are fixed (parameter sharing), few trainable

parameters added per task

– Yields compact and extensible downstream models (useful for online tasks):
• Compact: solve many tasks using small number of additional trainable parameters per

task

• Extensible: can be trained to solve new tasks without forgetting previous ones

Transfer Learning Tradeoff

6

Adapter Tuning
for NLP

- Few parameters
added for new
task
- Minimal
performance drop

Task
Generalization

Number of
Parameters

Key Properties of Proposed Strategy

7

1. Attains good performance

2. Permits training on tasks sequentially

(does not require simultaneous access to all

datasets)

3. Adds only a small number of additional

parameters per task

Adapter-based Tuning for Transformers

• Instantiate adapter-based

tuning for text

Transformers (SOTA for

many NLP tasks)

• Consider standard

Transformer

architecture,

proposed in Vaswani et

al. (2017).

8

Adapter Architecture Applied to Transformer

9

Inserted serial adapter
after each of the two
sub-layers in
Transformer layer
(attention layer,
feedforward layer).
Adapter is always
applied directly to
output of sub-layer
(after projection back to
input size, but before
adding skip connection
back. Adapter output is
then passed directly into
the following layer
normalization. Each sublayer is followed immediately by a

projection mapping features size back to size of
layer’s input. Skip connection is applied across
each sub-layer. Output of each sub-layer fed
into layer normalization.

Adapters project
original d-
dimensional
features into
smaller
dimension m.

Bottleneck architecture to limit
number of parameters

Project back to d-
dimensions

Apply
nonlinearity.

• Important: New layers are injected into original network, but original network weights are untouched/shared by many tasks!

Data Summary

• Task Categories: Classification, Extractive Question Answering

• Classification:
– Transfer BERT Transformer model, with adapters, to 26 text classification

tasks (including GLUE benchmark)
• GLUE (General Language Understanding Evaluation) benchmark:

– Benchmark of nine sentence- or sentence-pair language understanding tasks

built on established existing datasets

• 17 public classification tasks

– Analyze parameter/performance trade-off

• Extractive Question Answering:
– Tested on: SQuAD Extractive Question Answering v1.1

– Used to show that adapters work on tasks other than classification

10

GLUE benchmark: Procedure

• Transfer from pre-trained BERT-LARGE model:
– 24 layers, total of 330M parameters

– Perform small hyperparameter sweep (learning rates & number of epochs) for

adapter tuning

– Trained on 4 Google Cloud TPUs with a batch size of 32

• Test using fixed adapter size (# of units in bottleneck), and

selecting best size per task from {8, 64, 256}

• Compare to fine-tuning public, pre-trained BERT transformer

network
– Current standard for transfer of large pre-trained models, and strategy

successfully used with BERT

– For N tasks, full fine-tuning requires N x # parameters of pre-trained model

– Goal: attain equal performance with fewer total parameters
11

Experimental Results: GLUE Text Classification

• Performance on GLUE (mean GLUE score across 9 tasks):
– 80%: adapters

– 80.4%: full-fine tuning of standard BERT

– Near state-of-the-art performance
• Adapters add only 3% of # parameters trained by fine-tuning:

– Fine-tuning requires 9 x total # BERT parameters

– Adapters require only 1.3 x parameters

• Other observation:
– Optimal adapter size varies per dataset

• Always restricting to size 64 results in small decrease in mean GLUE score: 79.6%

12

Takeaway: On GLUE, adapter-tuning achieved scores within 0.4% of

full fine-tuning of BERT, but used only 3% of # parameters trained by

fine-tuning!

Project Goals and Included Components

• Goal:

– Reproduce the results from the GLUE tasks presented in the paper.

• Project components:

– Transfer from pre-trained BERT-LARGE model (24 layers, 330M

parameters)

• Fine-tune BERT on each task (100% of parameters trained)

• Train BERT w/ Adapters on each task

13

Our Selected GLUE Tasks:

• Selected a subset of GLUE tasks:

– Similarity and Paraphrase Task:

• Microsoft Research Paraphrase Corpus (MRPC)

– Automatically extracted sentence pairs from online news

sources

– Human annotations: are sentences semantically equivalent

– Single-Sentence Classification Task:

• The Corpus of Linguistic Acceptability (CoLA)

– Sentences w/ acceptability judgements from 22 books and

journal articles on linguistic theory

– Each example: single string of English words, annotated with

whether it is a grammatically possible sentence
14

Code Walkthrough: Evaluation Setup

15

Control TF Version and ignore
deprecation warnings

Check for TPU availability and
set address

Print list of TPUs available to
double check resources

Code Walkthrough: Evaluation Setup

16

We can see that we successfully found 7 TPUs and their address, which we will need to reference later in
the code because it changes from session to session

Code Walkthrough: Evaluation Setup

17

Google TPUs need to access
data and pretrained models from
Google Cloud Services

Set and check that we’ve
successfully found our GCS
Bucket

Here we see our Bucket is correct!

Code Walkthrough: Evaluation Code

18

Call to run classifier code -Train
Mode

● can set hyper-params here
● training takes multiple

hours
● Pass data, model, output

and TPU paths here

Call to run classifier code - Eval
Mode

● Loads fully tuned models
trained previously

● Eval takes ~3 min
● Doesn’t change model

weights, only applies model
to data

Code Walkthrough: Evaluation Code

19

run_classifier.py

● Controls Training and
Evaluation Loop

● Calls other functions
○ organizes running

the different
components of the
model provided by
the scripts

● Outputs TF flags tokenization.py

● tokenizes input data based on
model used

○ Cased vs. Uncased

optimization.py

● Defines Adam Weight Decay
Optimizer

modeling.py

● defines BERT model with
adapters

● parameter setting passed here

Code Walkthrough: MRPC Data Examples, Evaluation Output

20
Clipped example of data representation within the model

Total Parameters (Size of Bert and # of params trained during full fine-tuning) VS Trainable Params
(adapter-only parameters are the only trained weights during transfer of Adapter-Bert Model)

● Adapters require only around 3% of trainable parameters compared to fine-tuning (this ratio
depends on size of the adapter layers which can be specified as a hyper param.)

Code Walkthrough: MRPC Data Examples, Evaluation Output

21

Hyper Parameter Setting for Training MRPC Model:

● batch size: 32
● learning rate: 2e-5
● number of epochs: 15
● max. sequence length: 128
● adapter size: 64

Performance on MRPC evaluation set

● Bert Model Parameters: as default
○ hidden_size=768,
○ num_hidden_layers=12,
○ num_attention_heads=12,
○ intermediate_size=3072,
○ hidden_act="gelu",
○ hidden_dropout_prob=0.1,
○ attention_probs_dropout_prob=0.1

Results

• We achieved comparable results on a subset of GLUE tasks:

22

Evaluation Accuracy by Model and Dataset

MRPC CoLA Total

BERT 0.8504902 0.8274209 0.83895555

BERT w/
Adapters

0.85784316 0.8178332 0.83783818

● CoLA discrepancy: Paper reported Matthew’s coefficient
in the table, we reported accuracy, with results similar to
Figure on the right:

Visualization of Results

23

Conclusions

• Major conclusion/contribution from paper:

– Addition of adapter modules adds a small percentage of new

parameters for each new task, while still achieving state-of-the-

art performance

• Our results support this!

24

Discussion

• Major Challenge of Project:

– Complexity of transformer architecture

– How to train the models:
• Need to be run on a GPU with at least 12GB of RAM, or a Cloud

TPU

– Cannot train on local machines

• Tensorflow versioning issues with UVA CS Server

• Setting up virtual environment & project directory on server.

– Data-size exceeds allocated Google Colab space.
• Needed to set up Cloud TPU Storage Bucket & configure model to

work with Google Colab & TPU

– Time to train the models! 25

Division of Work

• Setting-up Training Environments

– SLURM: Kallie

– Google Colab w/ Cloud Storage Bucket: Kallie

– Project directory/Virtual environment w/ server GPUs: Stephanie

• Training Final Models: Kallie

• Running Final Experiments: Kallie

• Prepping Jupyter Notebook: Kallie

• Slides:

– Paper review slides:

• Related Work, Graphic Visualization, Conclusions & Future Work: Kallie

• Motivation, Background, Claim/Target Task, Proposed Solution & Key Properties,

Adapter & Architecture Explanation Slides, Data Summary, Experiments: Stephanie

– Additional final project slides:

• Results w/ Visualization, Discussion, Project Components: Stephanie

• Code Walkthrough: Kallie, Stephanie
26

References

[1] R. Caruana, Multitask learning. Machine Learning, 1997.
[2] I. Goodfellow, Y. Bengio, & A. Courville, “Deep Learning,” 2016.
[3] N. Houlsby et al., “Parameter-Efficient Transfer Learning for NLP,” arXiv

preprint arXiv:1902.00751, 2019.
[4] J. Howard & S. Ruder, “Universal language model fine-tuning for text

classification,” ACL 2018.
[5] M. Peters, M. Neumann, M. Iyyer, M. Gardner, C Clark, K Lee, L.

Zettlemoyer, “Deep conceptualized word representations,” NAACL, 2018.
[6] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

L. u. Kaiser, I. and Polosukhin, “Attention is all you need,” NIPS, 2017.

27

EXTRA SLIDES

The following slides are not part of the presentation, but can be

referred to during QA.

28

Features of Adapter Modules

• Two main features of adapter modules:

– Small number of parameters
• Adapter modules = small compared to the layers of the original network,

so total model size grows slowly when more tasks are added

– Near identity initialization
• Required for stable training of the adapted model

• Original network is unaffected when training starts since adapters are

initialized to a near-identity function

• During training, adapter modules can be:

– Ignored if not required

– Activated to change distribution of activations throughout network

• If initialization deviates too far from identity function, model may fail to

train 29

Implications of Bottleneck Architecture

• Total # parameters added per layer (including

biases): 2md + d + m

• m < d: limit number of parameters added per

task

• Bottleneck dimension m: provides means to

trade-off performance w/ parameter efficiency
– Few parameters relative to attention &

feedforward layers of original model

30

• Adapter module itself has a skip-connection internally
– If parameters of projection layers are initialized to near-zero, the module is initialized to an

approximate identity function.

• Additional step: trained new layer normalization parameters per task, alongside layers in the

adapter module
– Yields parameter efficient adaptation of network (2d parameters per layer)

• Important: New layers are injected into original network, but original network weights are

untouched and shared by many tasks!

Classification: Experiment Set-Up

• Base Model: public, pre-trained BERT transformer network

• Classification approach & training procedure from Devlin et al.

(2018):
– Classification approach:

• First token in each sequence is special “classification token”

• Attach linear layer to embedding of this token to predict class label.

– Training procedure:
• Optimize using Adam (learning rate is increased linearly over the first 10% of the

steps, then decayed linearly to zero)
– All runs trained on 4 Google Cloud TPUs with a batch size of 32

– Run a hyperparameter sweep and select the best model according to accuracy on the

validation set, for each dataset and algorithm

31

Additional Classification Tasks

• Used for validation of adapter efficacy in yielding compact, high-

performing models

• Diverse range of tasks & datasets (vary across # training examples,

classes, avg. text length, etc.)

• Procedure:
– Batch size 32, swept learning rates, selected # training epochs from {20, 50,

100} via manual inspection of validation set learning curves.

– Test adapter sizes {2, 4, 8, 16, 32, 64}

– Run additional baseline: variable fine-tuning

– Collected benchmark performances (since no comprehensive set of SOTA for

set of tasks)

• Result: Similar to GLUE, performance of adapter-tuning is close

to full fine-tuning (0.4% difference)
32

Parameter/Performance Trade-Off

• Smaller adapter size = fewer parameters = higher parameter

efficiency… but what is the impact on performance?

• Adapter size: parameter efficiency/performance trade-off
– Compared two baselines:

• Fine-tuning of top k layers of BERT(Base)

• Tuning only layer normalization parameters

– Results:
• Performance decreases dramatically on GLUE when fewer layers are fine-tuned, but

adapters had good performance across a range of sizes two orders of magnitude

fewer than fine-tuning.

• Performance decreased dramatically when tuning only layer normalization

parameters

33

SQuAD Extractive Question Answering

• Used as confirmation that adapters work on tasks beyond

classification

• Run on SQuAD v1.1:

– Task:
• Given question & Wikipedia paragraph, select the answer span to the

question from the paragraph.

– Results:
• Performance is comparable to full fine-tuning (while training many fewer

parameters):

– Adapter size 64 (2% of parameters): best F1 of 90.4%

– Full fine-tuning: 90.7%

– Adapter size 2 (0.1% parameters): best F1 of 89.9%
34

Experimental Analysis

• Analyses performed:

– Ablation: to determine which adapters are influential

– Robustness investigation: based on

• Initialization scale

• Number of neurons

– Documentation of unsuccessful architecture extensions

35

Experimental Analysis: Ablation

• Procedure:
– Remove some trained adapters & re-evaluate the model (without re-training) on the validation set

– Experiment performed on BERT-BASE with adapter size 64 on MNLI and CoLA datasets

• Observation 1: Each adapter has a small influence on the overall network, but the

overall effect is large.
– Removing any single layer’s adapters has only a small impact on performance.

• Largest performance drop from removing adapters from single layer was 2%

– When all adapters are removed from network, performance drops substantially (37% MNLI, 69%

CoLA) - scores attained by predicting the majority class

• Observation 2: Adapters perform well because they prioritize higher

layers/automatically focus on higher levels of the network
– Adapters on the lower layers have a smaller impact than the higher layers

• Removing adapters from layers 0-4 on MNLI barely affected performance

– Intuition:
• Lower layers extract lower-level features shared among tasks

• Higher layers build features unique to different tasks
36

Robustness Investigation: Initialization Scale

• Initialization scales:
– Main experiments:

• Weights in the adapter module drawn from a zero-mean Gaussian with standard

deviation 10^-2, truncated to two standard deviation

– Investigation for analysis of impact of initialization scale on performance:
• Test standard deviation in interval [10^-7, 1]

• Observations:
– On both datasets, performance of adapters is robust for standard deviations

below 10^-2.

– If initialization is too large, performance degrades (more substantially on

CoLA).

37

Robustness Investigation: Number of Neurons

• Procedure:
– Re-examine experimental data from GLUE benchmark:

• Observe:

– Stable quality of model across adapter sizes

– Only small decrease of performance when using fixed adapter size

across all tasks

– Calculate mean validation accuracy across 8 classification tasks by selecting

optimal learning rate/# epochs for each adapter size:

• Mean validation accuracies for adapter sizes 8, 64, 256:

– 86.2%, 85.8%, 85.7% = stability!

38

Experimental Analysis: Extensions

• Extensions to adapter architecture that didn’t yield significant

performance boost:
– Add a batch/layer normalization to the adapter

– Increase number of layers per adapter

– Try different activation functions (such as tanh)

– Insert adapters only inside attention layer

– Add adapters in parallel to main layers (possibly with a multiplicative

interaction)

• All cases: performance similar to bottleneck, which is more

simple and yields strong performance.

39

Project Components Not Included

• Components we did not reproduce w/ justification:

– Did not perform hyperparameter sweeps:
• These metrics not reported in paper, only best configuration was reported.

– Additional classification tasks:
• To benchmark these, a Neural AutoML algorithm was run for one week on CPUs

using 30 machines.

• Given training time for the model, GLUE tasks seemed more standardized (as

demonstrated by lack of baseline for additional tasks) and important to generate

results.

– SQuAD Extractive Question Answering, Ablation and Robustness

Investigation
• Time-prohibitive for training the models.

40

Conclusion and Future Work

41

• The addition of adapter modules was found to add only a few
parameters for each new task while still achieving state-of-the-art
performance
– adapters were found to automatically place more weight on

higher levels, which coincides with learning features that are
task specific

– model performance was stable across adapter module size
– adapters were robust to single adapter layer removal but model

performance dropped significantly when all adapters were
removed

• This work can be extended to applications beyond NLP including:
Computer Vision, Machine Translation, and other areas

• More work can be undertaken to understand how adapter modules
behave under different architectures, tasks, and hyperparameter
settings

