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Motivation
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● Optimization of non-convex functions pose challenges due to the
presence of Saddle Points and Suboptimal Local Minima.

● Existing work has proved convergence of GD by injecting explicit,
isotropic noise to make GD escape saddle points.

● Since Isotropic noise exhibits variance in all the directions, the first
order and second order time complexities become dimension
dependent.



Background

● Reaching a 1st order stationary point :
➢ First order stationary point can be reached much faster by SGD compared to

GD.

● Reaching a 2nd order stationary point
➢ Existing 1st order techniques add isotropic noise with a known variance.
➢ GD methods are unlikely to get stuck, but if they do, adding noise allows them

to escape saddle points (Lee et al., 2016).

● Using Curvature Information
➢ Since negative curvature signals potential descent directions, a 2nd order

method can be applied to exploit this curvature direction to escape saddle
points.

➢ Does not guarantee global convergence and is locally attracted by saddle
points and local maxima (Dauphin et al., 2014).



Related Work
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● Convergence of SGD with additional noise was analysed (Ge et al., 2015) but no
prior work demonstrated SGD Convergence without explicitly adding noise.

● Using Curvature information, convergence to a second-order stationary point
(Conn et al., 2000) was derived & has been shown to achieve the optimal worst
case iteration bound (Polyak, 2006).

● Sub-sampling the Hessian can reduce the dependence on n by using various
sampling schemes (Kohler & Lucchi, 2017; Xu et al., 2017).

● It was shown that noisy gradient updates act as a noisy Power method allowing
to find a negative curvature direction using only first-order information (Xu &
Yang, 2017) and (Allen-Zhu & Li, 2017)



Claim / Target Task
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Claim :
● Injection of explicit, isotropic noise usually applied to make GD 

escape saddle points can successfully be replaced by a simple SGD 
step.

● Derive the  first convergence rate for plain SGD to a second-order 
stationary point in a number of iterations that is independent of the 
problem dimension.

Target Task :
● Analyse the convergence of PGD and SGD for optimizing non convex 

function under a new assumption
● Correlated Negative Curvature (CNC) - requiring stochastic noise to 

exhibit variance along the directions of negative curvature.  Thereby, 
removing dependency on dimensionality.



WHY Claim
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● In almost all previous 
methods of escaping the 
saddle point involving 
adding noise to the GD 
process.

● This will add difficulties 
when dealing with a 
large dataset with high 
dimensionalities

● A simple SGD step that can escape the saddle point will be 
extremely helpful for dataset with high dimensionalities.



Proposed Solution

1. CNC PGD (Perturbed GD): 
• The Gradient Descent under the CNC assumption 

(perturbed with SGD steps) performs better than GD 
perturbed with isotropic noise.

1. CNC SGD: 
• SGD without perturbations, escapes the saddle point 

faster due to the intrinsic noise generated in each 
iteration due to sampling.
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Implementation
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Replace the Perturbation(a) with a Stochastic Gradient Descent 
Step(b)

Theory was proven by showing that given a stochastic gradient 
that meets the CNC assumption, replacing the isotropic noise 
with intrinsic noise from a SGD step returns a secondary 
stationary point with probability proportional to the number of 
steps



Data Summary

● MNIST dataset with 70,000 samples and 30 parameters 

was used

● 28x28 pixel black and white images of handwritten 

digits

● The training data consists of 60000 training samples 

and the testing data is 10000 samples
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Experimental Results

1. SGD, GD, ISO-PGD and CNC-PGD are initialized close to a 

saddle-point with Gaussian input data and sigmoid loss.

1. Results show that the Stochastic Gradient Descent finds a 

negative curvature faster to escape the saddle points.

1. CNC SGD performs slightly better than CNC GD 

1. ISO PGD contains isotropic noise to escape the saddle point 

within finite iterations 10



Experimental Analysis

Based on the above Experimental Results, following are the 

implications:

1. Wide and deep neural networks can be trained by using Stochastic 

Gradient Descent while escaping the saddle points.

2. The bounds established through Lemma 4 can be used to train the 

Neural Networks. The regularization of optimization methods rely 

on the SGD since, the directions of large curvature correspond to 

the principal components of the data for many ML models.
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Reproduction Results
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Reproduction

● Implemented algorithm of SGD, GD, CNC-PGD and ISO-PGD on a 
Keras library
○ Used a Feed-forward CNN

● Used the MNIST dataset



Conclusion and Future Work

● Convergence of PGD and SGD is analyzed for optimizing non-
convex functions which makes use of stochastic noise to exhibit 
variations along the most negative curvature.

● CNC - GD and CNC SGD produce better results than GD with 
isotropic noise.

● The future works suggested in this paper is regularization and 
optimization of stochastic gradient methods.

14



Daniel Choi
● code implementation 
● Slides - Proposed Solution, Implementation, Data Summary

Kamya mehul Desai
● code implementation
● Slides -Experimental result, Experimental Analysis, Conclusion and Future Work

Yuancheng Lin
● code implementation
● Slides - Claim, Target Task, WHY Claim

Archana Narayanan
● code implementation 
● Slides - Motivation, Background and Related Work 

15

Tasks for each team member



References

● https://arxiv.org/abs/1803.05999v2
● https://vimeo.com/312282771

16

https://vimeo.com/312282771

