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Introduction
Basic Premise and Motivation

I Relational databases are used in a vast amount of applications

I Accessing these databases requires understanding of query
languages like SQL which can be difficult to master

I Thus, it can be useful to be able to translate natural language
questions into SQL queries



Introduction
Summary Diagram



Model

I Task is to generate SQL query given a question and table
schema

I For baseline model, use the attentional seq2seq neural
semantic parser proposed by Dong Lapata (2016) which
achieves state-of-the-art performance on many datasets
without hand-engineered grammar

I Note that output space of baseline is unnecessarily large; we
only need table columns, the question, and SQL keywords in
output



Model
Augmented Pointer Network

I Generates SQL query token by token by selecting from input
sequence

I Input sequence is concatenation of column names, the
question, and SQL keywords

I Let x s represent sequence of words in SQL vocab, xq represent
sequence of words in question, and xci be the sequence of
words in the ith column; then we can write input as

x = [< col >; xc1 ; xc2 ; ...; xcN ;< sql >; x s ;< question >; xq]

where sentinel tokens separate the three types of inputs



Model
Augmented Pointer Network

I x is encoded using two-layer bidirectional LSTM; inputs to
encoder are embeddings corresponding to words in input
sequence

I Denote output of encoder as henc , where henct is state of
encoder corresponding to tth word in input sequence

I Decoder uses two-layer unidirectional LSTM; at each step s,
takes the previous output as input and generates state gs

I Then, an attention score is calculated for each position of
input sequence

αptr
s,t = W ptr tanh (Uptrgs + V ptrht)

Finally, choose input token with highest score



Model
Seq2SQL

I Note that SQL queries generally have 3-part structure: an
aggregation operator followed by a SELECT column, and
ending with a WHERE clause

I First two components are supervised using cross-entropy loss
and third component is trained with policy gradient

I This further prunes output space of generated queries

I Overall model is trained with mixed objective function which
equally weights loss function for each component

L = Lagg + Lsel + Lwhe



Model
Seq2SQL: Aggregation Operation

I Depends on the question: for example, a question beginning
with ”How many...” would have a COUNT operator

I First, compute scalar attention scores for each tth token of
the input sequence: αinp

t = W inphenct

I Then, normalize to produce input encodings:
βinp = softmax(αinp)

I κagg = Σtβ
inp
t henct is the aggregate input represenation

I Let αagg = W agg tanh(V aggκagg + bagg ) + cagg represent the
scores of the aggregation functions (COUNT, MIN, MAX,
NULL) computed by applying a multi-layer perceptron

I Finally, use softmax and cross-entropy loss to select the
operation



Model
Seq2SQL: SELECT Column

I Essentially a matching problem where we choose best column
name given the question

I First, encode each column using LSTM:
hcj ,t = LSTM(emb(xcj ,t), h

c
j ,t−1), ecj = hcj ,Tj

where j is the
column, hcj ,t is the tth encoder state for the jth column, and
last encoder state is ecj

I To encode the question, compute input representation κsel

similarly as κagg but with untied weights

I Apply multi-layer perceptron over the column representations
with αsel

j = W sel tanh(V selκsel + V cecj )

I Again, use softmax and cross-entropy loss to select the column



Model
Seq2SQL: WHERE Clause

I WHERE conditions can be swapped and yield the same result,
so previous methods may not work well; instead use RL policy

I Instead of teacher forcing at each step of query generation,
sample from output distribution to generate next token

I Let y be the generated WHERE clause, q(y) be the query
generated by the model, and qg be the ground truth query;
then, define reward function

R(q(y), qg ) =


−2, if not valid SQL query

−1, if valid SQL query with incorrect result

+1, if valid SQL query with correct result

I Then, define loss from WHERE clause
Lwhe = −Ey [R(q(y), qg )]; derivation of policy gradient in
paper



Model
Seq2SQL Graphic



WikiSQL

I Collection of questions, corresponding SQL queries, and SQL
tables

I Largest hand-annotated semantic parsing dataset to date;
order of magnitude larger than comparable datasets in number
of tables in some cases and number of examples

I WikiSQL has many table schemas and has realistic data from
the web

I Collected by crowd-sourcing on Amazon Mechanical Turk in
two phases: (1) Worker paraphrases generated question for
table, where questions are made based on a template, (2) 2
other workers verify that paraphrase matches question, also
discarding ones without enough variation

I Dataset randomly divided into training, dev, and test sets



WikiSQL



WikiSQL
Evaluation

I Let N be the number of examples in the dataset, Nex be the
number of queries that have the correct execution result, and
Nlf be the number of queries which exactly match the ground
truth query

I Use accuracy metrics Accex = Nex
N and Acclf = Nlf

N

I Cannot only use ex accuracy because sometimes multiple
queries give the same result even if they aren’t the same query

I Cannot only use lf accuracy because sometimes the WHERE
clauses switches the order clauses, thus not exactly matching
ground truth



Experiments

I Tokenize dataset using Stanford CoreNLP, using normalized
tokens for training and converting back into original gloss
before outputting query

I Used GloVe word embeddings and character n-gram
embeddings

I All networks run for at least 300 epochs with early stopping

I Traing using Adam optimizer and dropout

I All recurrent layers have hidden size 200 and 0.3 dropout

I WHERE clause training is supervised using teacher forcing
(not trained from scratch) and continued with RL



Experiments
Result

I Seq2SQL achieves state-of-the-art; to make baseline more
competitive, augment the baseline’s input too



Experiments
Analysis

I Limiting the output space via pointer network leads to more
accurate conditions

I Incorporating structure reduces invalid queries

I RL trains higher quality WHERE clauses which can be ordered
differently from ground truth



Related Work
Semantic Parsing

I Natural language questions are parsed into logical forms that
are then executed on a knowledge graph

I Typically constrained to single table schema and require
hand-curated grammars to perform well

I Some modifications allow for generalization to new table
schema, but Seq2SQL does not require access to table
content, coversion of tables to graphs, or hand-curated
grammars

I Many datasets are single-schema and overall limited in scope



Related Work
Representation Learning for Sequence Generation

I Dong Lapata (2016) has state-of-the-art seq2seq neural
semantic parser without need for hand-engineered grammar

I Vinyals et al. (2015) has similar pointer-based generation

I Many more in paper



Related Work
Semantic Parsing

I PRECISE (Popescu et al., 2003) translates questions to SQL
while identifying questions it is unsure about

I Giordani Moschitti (2012) generates candidate queries from a
grammar and ranks them using tree kernels

I Above two require high quality grammars and do not
generalize to new schema

I Iyer et al. (2017) uses a seq2seq model improved by human
feedback

I Seq2SQL’s RL training outperforms seq2seq



Conclusion

I Seq2SQL leverages structure of SQL to reduce output space
of model

I Applied in-the-loop query execution to train Seq2SQL since
cross-entropy loss is unsuitable

I Introduced WikiSQL, a dataset of questions and SQL queries
an order of magnitude larger than comparable datasets

I Showed that Seq2SQL outperforms state-of-the-art semantic
parsers on WikiSQL
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