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Introduction
Basic Premise and Motivation

I Deployment of ML models to large number of users has
restrictions on latency and computational resources

I Can transfer knowledge from more cumbersome model to
smaller model

I Look at ML models as mappings from input to output vectors

I Transfer both accuracy and generalization by looking also at
the relative distribution of wrong classes; use class
probabilities of large model as soft target for small models

I Raise temperature of softmax until targets soft enough

I Cannot exactly match soft targets, but erring in direction of
correct answer produces good results



Distillation

I Neural networks typically produce a softmax layer which
converts logits to probability with some temperature T usually
set to 1

qi =
exp(zi/T )

Σj exp(zj/T )

I In simplest form, distillation is performed by training distilled
model on transfer set using a soft target distribution produced
by large model with high temperature in its softmax

I Best results when training on two weighted objective
functions: cross entropy with soft targets and cross entropy
with correct labels, with small weight on the second



Distillation
Matching Logits

I Through derivations, arrive at expression

∂C

∂zi
≈ 1

NT 2
(zi − vi )

where zi are logits of distilled model and vi are logits of
cumbersome model

I In high temperature limit, distillation equivalent to minimizing
1/2(zi − vi )
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I At lower temperatures, distillation pays less attention to
matching logits much more negative than average; could be
advantageous (remove noise) or disadvantageous (remove
important generalization information)

I Empirically determine temperature to be some intermediate
value



Preliminary Experiments on MNIST

I Trained single large neural net with 2 hidden layers of 1200
ReLUs each on all 60,000 training cases

I Regularized using dropout and weight-constraints, images
jittered in 2 pixels in any direction

I Large model produced 67 errors

I Small model with 2 hidden layers of 800 ReLUs each achieved
146 errors, but lowered number to 74 when training while
trying to match large model soft targets (with T = 20)

I Temperature can be empirically altered

I Omitting all examples of 3 on the transfer set only increased
error count to 206, 133 of which were the 3s



Experiments on Speech Recognition

I Investigate effects of ensembling DNN acoustic models using
in Automatic Speech Recognition (ASR); show that we can
distill ensemble into 1 model of same size as other individual
models

I State-of-the-art ASR systems map a short temporal context of
features from the waveform to a probability distribution over
all states of a Hidden Markov Model (HMM)

I Use architecture with 8 hidden layers each containing 2,560
ReLUs and final softmax with 14,000 labels; input is 26
frames of 40 Mel-scaled filter-bank coefficients with 10ms
advance per frame

I Predict HMM state of 21st frame



Experiments on Speech Recognition
Results

I Train 10 separate models with exact same architecture and
training procedure as baseline; random initialization

I Varying training data did not significantly change results

I For distillation, tried temperatures of 1, 2, 5, 10 and used 0.5
for relative weight of hard target cross entropy



Training Ensembles of Specialists

I Training ensembles is effective because we can take advantage
of parallelization

I However, in some cases, even parallelization is not enough if
the dataset is large enough

I Thus, explore how specialist models can be used to cut
computational costs for these cases



Training Ensembles of Specialists
JFT Dataset

I The JFT dataset is an internal Google dataset with 100
million labeled images with 15,000 labels

I Google baseline model is deep CNN trained for around 6
months with multiple cores

I Two types of parallelism: (1) multiple replicas trained on
multiple cores and processing mini-batches from training set
communicating with shared parameter server and (2) Each
replica spread over multiple cores

I Ensembling can be wrapped around these methods provided
there are more cores

I Needed a faster way to improve baseline



Training Ensembles of Specialists
Specialist Models

I Makes sense to have one generalist model and many
”specialist” models which are trained on data highly enriched
in examples from a very confusable subset of classes:
examples include different types of mushrooms

I For specialist models, every class that does not matter can be
combined into a dustbin class

I To reduce overfitting, each specialist initialized with
parameters of generalist model

I Then, take half of examples from special subset and other half
from remainder of training set; in the end, to account for bias,
increment dustbin logit by log of proportion by which
specialist class oversampled



Training Ensembles of Specialists
Assigning Classes

I Focus on categories which full network often confuses

I Instead of using confusion matrices to cluster, apply clustering
algorithm to covariance matrix of the predictions of our
generalist model

I This is done such that a set of classes Sm that are often
predicted together will be used as targets for specialist model
m



Training Ensembles of Specialists
Inferences with Ensemble of Specialists

I Given input image X, do top-one classification in two steps

I (1) For each test case, find n = 1 most probable classes
according to generalist model

I (2) Take all specialist models with non-empty intersection
with the n selected classes as set Ak

I Find full probability distribution q which minimizes

KL(pg , q) + Σm∈Ak
KL(pm, q)

where KL is the KL divergence

I If a single probability is produced for each class, can just take
arithmetic or geometric mean

I Parameterize q = softmax(z) with T = 1 and use gradient
descent to optimize z



Training Ensemble of Specialists
Results

I Initialization allows specialist models to train in a few days
instead of months

I Specialist models, overall, do seem to improve model accuracy



Soft Targets as Regularizers

I With limited data (3% of data), training on hard targets
resulted in severe overfitting; had to stop early

I Training on soft targets allowed model to reach within 2% of
baseline accuracy; did not require early stopping

I Might have been better to have specialists train with full
number of classes instead of using a dustbin class to prevent
overfitting



Relationship to Mixtures of Experts

I Training using specialists is similar to training using experts
which use a gating network to compute probability of
assigning each example to an expert

I Gating network learns to choose which experts to assign
examples to using the relative discriminative performance of
the experts for that example

I Main problem is difficulties with parallelizing this process since
assignment probabilities depend on all the experts

I Much easier to parallelize training of specialist models



Discussion

I Showed that distillation is very effective for transferring
knowledge from large, highly regularized model to smaller,
distilled model

I On MNIST, distillation works well even when transfer set
lacks some classes

I On deep acoustic models, distillation of entire ensemble into
single model works well

I For large enough models, an ensemble maybe infeasible, but
the performance can be improved by training specialist nets;
as of now, have not yet shown that these can be distilled into
one final net
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