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ICML 2017 Tutorial

* 0. Interpretation is hard
* Motivation: Interpretation is important
* Decision tree example
* Understand everything = Impossible

* 1. Why & When we need interpretability
e 2. How to achieve interpretability
* 3. How to evaluate interpretability



Machine learning system

THIS 15 YOUR MACHINE LEARNING SYSTET?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSLJERS ON THE OTHER SIDE.

JHAT IF THE ANSLERS ARE LRONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT.

https://xkcd.com/

Cost-effective Health Care (CEHC) built models to predict
probability of death for patients [Cooper et al. 97]

® HasAsthma(x) = LowerRisk for pneumonia (x)

\ /

Doctors think Aggressive
he/she is high risk Treatment

| =

https://xkcd.com/

Example borrowed from [Caruana et al. '15]



Decision Tree

* Decision tree is not enough in large scale

Sample decision tree #3
Input: [ ICML, 2017, Australia, Kangaroo, Sunny ]

Weather = ) N
Yes A ~ cloudy ,
. Animal = mammal ' ' Year > 2014 .
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If-else/Rule set

IF ( sunny and hot ) OR ( cloudy and hot ) OR

( sunny and thirsty and bored ) OR ( bored and
tired ) OR (thirty and tired ) OR ( code running ) OR
( friends away and bored ) OR ( sunny and want to
swim ) OR ( sunny and friends visiting ) OR ( need
exercise ) OR ( want to build castles ) OR ( sunny
and bored ) OR ( done with deadline and hot ) OR (
need vitamin D and sunny ) OR ( just feel like it)
THEN go to beach

ELSE work



Understanding all = Impossible

* Interpretability is NOT about understanding all bits and bytes of the
model for all data points (we cannot).

* It's about knowing enough for your downstream tasks.



Agenda

Interpretation is the process of giving
explanations

To Humans




Why & When we need interpretability

* Why? Underspecification (Features are omitted)

* When
e 1. Safety -> Interpretability helps safety
e 2. Debugging
3. Mismatched objectives and multi-objective trade-offs

4. Science -> Want to have more discovery
5. Legal/Ethic



How to achieve interpretability

Types of interpretable methods

Before building Building After
any model a new model building a model



Before building the model

e Data analysis
* Visualization
* Exploratory data analysis



Building model

e 1. Rule-based

Left

Conference

Building a new model: Rule-based

= |CML

&

Right

Continent

Stomp

= Antarctica»

Clap!

IF (sunny and hot ) OR ( cloudy and hot )
THEN go to beach
ELSE work

decision trees, rule lists, rule sets
[Breiman, Friedman, Stone, Olshen 84]

[Rivest 87]

[Muggleton and De Raedt 94]

[Wang and Rudin 15]

[Letham, Rudin, McCormick, Madigan '15]

[Hauser, Toubia, Evgeniou, Befurt, Dzyabura 10]

[Wang, Rudin, Doshi-Velez, Liu, Klampfl, MacNeille 17]



Building model

e 2. Case-basd

prototypes

Cluster A

j Building a new model: Case-based

Cluster B
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salt, pepper, taco
shell, lettuce, oil

\_ W,

 Basic crepe

Cluster C

‘Chocolate berry tartf:

water, salt, milk,
butter

\.

pie crust, whipping cream,

kirsch, almonds

\_




Building model

* 3. Sparsity based ‘"Building a new model: Sparsity-based

[

Correlations across subtrees: may be a single cause
manifesting in multiple aspects. Model that!

_ atient-
Pr( data ) = Mult( gubtype cShcents )
@ diagnosis
n T
Graph-sparse LDA [Doshi-Velez et al.’15] C




Building model

* 4. Monotonicity

Building a new model: Monotonicity
o

‘ 0.4 1 ' ‘ 0

l l ‘ I M.

Scale Monotonlc Monotomc Not Monotonic Not Monotonic
(a) (c) (d) (e)

® | carn piecewise monotonic function within a user specified
lattice (intervals) [Gupta et al. "16]

® Monotonic neural networks by constraining weights
[Neumann et al.”13, Riihimaki and Vehtari ‘10]



After building a model

* Analyze the result:
e Sensitivity analysis
e Saliency
* mimic/surrogate models
* |nvestigation on hidden layers



Saliency

. After building a model:
Saliency/attribution Maps

SmoothGrad [Smilkov et al. 17]

Top label: starfish
Score: 0.999992




Drawback of saliency
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Mimic models

. Atfter building a model:
Mimic models

® Model compression or distillation [Bucila et al. ‘06, Ba et al. "14,
Hinton et al. "15]

® Visual explanations [Hendricks et al. "16]

This is a cardinal because ...
(7 Deep Finegrained Classifier ) ‘ (" Recurrent explanation generator model

(it J:[ has J:[_a J:[orignt]:[ red ]o @ @-[<EOs-]




Investigation on hidden layer

* |Investigation on hidden

layers . Atfter building a model:
* Issues: Investigation on hidden layers
* A. They may be lack of
actlonable |nS|ghtS [Dosovitskiy et al. "16] u [%gileretal. 13]

* B.Itisunclear if
visualizing neuron vs.
per layer vs. per
subspaces is more
meaningful than others

* C. A golden dataset with
detailed labels with
human concepts are oA

often not available | ﬁ 1
g |15 ([ ([ [[5 1|3 :
] 3 |8 ’5 / 1

eze trained network weights Upsample target layer ~ Evaluate on segmentation tasks

[Bau and Zhou et al. "17]




Evaluation of interpretability

How are we measuring
explanation quality now?

Give human a task, then

You know it when you see it measure how well they do

|Generalized additive models (GAMs) are the gold stan- |
dard fbr intelligibility when lbw-dimensional terms are con-

Q. Which group

sidered [4, 5, 6]. Standard GAMs have the form does this
(Ely)) = Bo+ Y_ fil=s), (1) new data point
where g is the link function and for each term f;, E[f;] = 0. belong to?

Generalized linear models (GLMs), such as logistic regres-

B. Group 2

accurate, yet are highly interpretable. These predictive mod* g
the form of sparse decision lists, which consist of a series ok
statements where the if statements define a partition of a s¢. o
and the then statements correspond to the predicted out,con.i’,‘ o
[Because of this form, a decision list model naturally provide




Evaluation

Spectrum of evaluation

Function-based

How sparse are
the features?

Does it look
reasonable?

D et

aAllell|lenD aAlleluenp



Evaluation

Spectrum of evaluation




Mind the Gap: A Generative Approach to

Interpretable Feature Selection and Extraction
NIPS 15’ Been Kim, Doshi-Velez Finale, Julie Shah

e Task: feature selection

* Mind the Gap Model: A graphical model that extracts distinguishing
features with interpretability



Setting

e Dataset: N observations and D binary features

* Goal: Divide the N observations into K clusters while simultaneously
returning a comprehensive list of what sets of dimensions D are
important for distinguishing between the clusters.



Graphical model

*g-—group

*ylg -group gis
selected or not
selected

e /ld -the group to
which dimension d
belongs

"\ f ¥
az q@i_>@7> i7Lg wnd
G

(a) Mind the gap graphical model

QO Q0D
(1)
O O@ OO
(2)

@w
(3)

(b) Cartoon describing emissions from
important dimensions. In our case, we
define importance by separability—or
a gap—rather than simply variance.
Thus, we distinguish panel (1) from (2)
and (3), while [17] distinguishes be-
tween (2) and (3).



Graphical model

* g — group

e flg - or/and. Each
feature only in one
group

* dng -group g
shown in sample n

e wind =1 if
associated features

also present in the
sample

"\ f ¥
az q@i_>@7> Z'n/g wnd
G

(a) Mind the gap graphical model

QO Q0D
(1)
O O@ OO
(2)

@w
(3)

(b) Cartoon describing emissions from
important dimensions. In our case, we
define importance by separability—or
a gap—rather than simply variance.
Thus, we distinguish panel (1) from (2)
and (3), while [17] distinguishes be-
tween (2) and (3).



Example

Normalized average feature values

[OR]
Silly glasses

[OR]
Sunglasses | |
Hat

[OR]
Pencil

m
-
w
-
e

[OR]
Earmuff 1.0
Scarf
Smile

Vacation cluster Student cluster Winter cluster Vacation Student Winter

)

Figure 2: Motivating examples with cartoons from three clusters (vacation, student, winter) and the
distinguishable dimensions discovered by the MGM.



Experiment

* Animals - 21 biological and ecological properties of 101 animals
e Recipes - 56 recipes, with 147 total ingredients
* Diseases - 184 patients with at least 200 diagnoses



Result

oM 08 1.0 1.0 1.0 i
Chocolate

Bay leaf

Butter

[OR] Bouillon

Breathes 06 1.0 1.0 1.0 1.0 Chicken
Catsize Cumin
Cayenne

0.7 |Conduct, Anxiety, ADD (4)|| 1.0 1.0

Developmental Delays, Epilepsy (7) 0.9

Speech Delays, Epilepsy (6) 0.7
|Congenita| Anomalies (4)

[OR] — 10 06 07
Backbone
Tail| 0.9 0.5 1.0 1.0 1.0 Wi 0.6 [ Multi-System (8) 10 09 08
Toothed Pepper PN
Cerebral Palsy, Epilepsy (7) 0.9 1.0 0.8
[OR] —————————
[oR]| Zest |Obesity, Headache (5) 0.9 0.8 -
Predator 08 08 Nt
sﬁt'fla': ; 1.0 | Constipation, Abdominal Pain (6) 0.9 0.9 0.6
allo i
Haddock Crab  Bear Scorpion Flea Chicken (Orange Feeding Difficulties, Reflux (3) 0.8 1.0 0.7
Catfish Frog Deer Housefly Gull T°"""Z‘a’:‘l'ig
Dolphin Tortoise Squirrel w. Pengui : ! ‘ :
gmn orioise sadine mllii Pasta Punch Brownies Chili 0 1 2 3

Figure 3: Results on real-world datasets: animal dataset (left), recipe dataset (middle) and disease
dataset (right). Each row represents an important feature. Lighter boxes indicate that the feature is
likely to be present in the cluster, while darker boxes are unlikely to be present.



How do Humans Understand Explanations from
Machine Learning Systems? An Evaluation of the
Human-Interpretability of Explanation

Menaka Narayanan*1, Emily Chen*1, Jeffrey He*1, Been Kim2 , Sam Gershman1 and Finale Doshi-Velez
* Given an input, an explanation, and an output, is the output

consistent with the input and the supposed rationale?

* Study the effect of different explanations on human: For example, is a
longer evaluation makes people harder to understand?

* If we understand that, it helps to generate better explanations




Definition of explanation

* In the form of Decision sets:

weekend and raining — sad
spinach or chocolate — gas (which the alien hates)
sad — vegetables and candy or spices

Figure 1: Example of a decision set explanation.

* Each line contains a clause in disjunctive normal form (an or-of-ands)
of the inputs, which, if true, provides a way to verify the output (also
in disjunctive normal form).



Test interface

The alien's preferences: The allen's diagnosis:

frowning or upset stomach — flu season

flu season and October — hives

shrugging or hives — fast heart rate

fast heart rate and feverish or anemic or shortness of breath — vitamins and stimulants or laxatives

checking the news and coughing — windy
snowing or humid and weekend — spices or vegetables and grains
embarrassed and grouchy or raining — dairy or vegetables

snowl:g or w'"iy a:d e:er]geslc - ca'ndy or daliry anddf;ulit bleeding or anemic and fatigued — painkillers and tranquilizers or vitamins
e e i L L headache or feverish and anemic — laxatives and painkillers or stimulants
high blood pressure and allergies or fast heart rate and bleeding — tranquilizers or vitamins and
stimulants
Observations: Saturday, Ingredients:
coughing, checking the news )
* Vegetables: okra, carrot, spinach Observations: anemic, October, Disease Medications:
* Spices: turmeric, thyme, cinnamon frowning

* antibiotics: Aerove, Adenon,
Athoxin

¢ painkillers: Poxin, Parola, Pelapin
¢ vitamins: Vipryl, Vyorix, Votasol

* Dairy: milk, butter, yogurt
* Fruit: mango, strawberry, guava
* Candy: chocolate, taffy, caramel

Recommendation: bagel, rice, « Grains: bagel, rice, pasta ; ) i
e stimulants: Silvax, Setoxin, Soderal
Is the alien happy strawberry . o tranquilizers: Trasmin, Tydesol,

. . A |

with his meal? . Recommendation: Vipryl, Texopa
Is the a.llen .happy Setoxin, Votasol « laxatives: Lantone, Lezanto, Lexerol

with his
prescription?
Yes No
Yes No

Submit Answer

(a) Recipe Domain (b) Clinical Domain
1 1



Variables

* V1: Explanation Size - Number of lines of explanation
* VV2: Creating New Types of Cognitive Chunks — Number of terms
* \V3: Repeated terms: How many time a certain term repeated



Experiment

* A total of 600 subjects

* On 6 experiments: 3 Variables on 2 situations

Accuracy

Explanation Length and

mNumber of Output Terms in Recipe Domain

°
©

°
®

°
2

°
>

0.5

0.4

—— Short Output (2 terms)
—— Long Output (5 terms)

2 3 4 5 6 7 8
Explanation Length

(a) Recipe_V1 Accuracy

Accuracy

Number of Cognitive Chunks and
lolmplicit Cognitive Chunks in Recipe Domain

—— Explicit (abstracted out)
—— Implicit (embedded within)

0.6

10 15 20 25 3.0 35 4.0 45 5.0
Number of Cognitive Chunks

(b) Recipe_V2 Accuracy
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°
g

Accuracy for
Nlunmber of Variable Repetitions in Recipe Domain

o
®

°
>
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(c) Recipe_V3 Accuracy

Accuracy
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—— Long Output (5 terms)

2 3 4 5 6 7 8
Explanation Length

(d) Clinical_V1 Accuracy

Accuracy

Number of Cognitive Chunks and
mlmplicit Cognitive Chunks in Clinical Domain

—— Explicit (abstracted out)
—+— Implicit (embedded within)

0.6

10 15 20 25 3.0 35 4.0 45 5.0
Number of Cognitive Chunks

(e) Clinical V2 Accuracy

Accuracy for
N}Jomber of Variable Repetitions in Clinical Domair

Accuracy
° °
2 s

o
Y
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Number of Variable Repetitions

(f) Clinical _V3 Accuracy

Figure 3: Accuracy across the six experiments. Vertical lines indicate standard errors.



Experiment result

Accuracy

Recipe Clinical
Factor weight | p-value weight | p-value
Explanation Length (V1) -0.0116 | 0.00367 | -0.0171 | 0.000127
Number of Output Terms (V1) -0.0161 | 0.0629 0.00685 | 0.48
Number of Cognitive Chunks (V2) 0.0221 | 0.0377 0.0427 | 0.00044
Implicit Cognitive Chunks (V2) 0.0147 | 0.625 0.0251 | 0.464
Number of Variable Repetitions (V3) | -0.017 | 0.104 -0.0225 | 0.0506

Response Time

Recipe Clinical
Factor weight | p-value weight | p-value
Explanation Length (V1) 3.77 2.24E-34 | 33 5.73E-22
Number of Output Terms (V1) 1.34 0.0399 1.68 0.0198
Number of Cognitive Chunks (V2) 8.44 7.01E-18 | 4.6 1.71E-05
Implicit Cognitive Chunks (V2) -15.3 2. 74E-08 | -11.8 0.000149
Number of Variable Repetitions (V3) | 2.4 0.000659 | 2.13 0.0208

Subjective Evaluation

Recipe Clinical
Factor weight | p-value weight | p-value
Explanation Length (V1) -0.165 | 5.86E-16 | -0.186 | 1.28E-19
Number of Output Terms (V1) -0.187 | 2.12E-05 | -0.0335 | 0.444
Number of Cognitive Chunks (V2) -0.208 | 1.93E-05 | -0.0208 | 0.703
Implicit Cognitive Chunks (V2) 0.297 0.0303 0.365 0.018
Number of Variable Repetitions (V3) | -0.179 | 5.71E-05 | -0.149 0.000771




Sanity Checks for Saliency Maps

Julius Adebayo, Justin Gilmer, Michael Muelly, lan Goodfellow, Moritz Hardt, Been Kim

* An assessment of different explanation methods(Based on gradient)

Integrated Gradient

Original ) Guided Guided Integrated Gradients :
Image  Gradient SmoothGrad  BackProp GradCAM Gradients SmoothGrad  Input

Edge
Detector

T . ' _ ..
e ; “‘: ] i .Ll! "SW‘ o ~.‘,s‘¢ -3 Qt’:,
5 A i 5 e, . ¥ 'A t

Wheaten
Terrier




Methods

* Gradient () Input: Elemental wise product
1 T T—T
* Integrated Gradients (IG): Eic(z) = (v — ) fo 95(Z ng( ) da,

* Guided Backpropagation (GBP) - negatlve gradlent entries are set to
zero while back-propagating through a ReLU unit.

* Guided GradCAM: Based on gradient to the feature map of the last
convolutional unit

* SmoothGrad (SG): Smooth the noise from saliency map
N
Esg(x) = % i1 E(x+9:)



Test 1: Model randomization: Cascading

Randomization

* randomize the weights of a model starting from the top layer to

bottom

Cascading randomization

P c
Original Image % : from top to bottom layers
«
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Figure 2: Cascading randomization on Inception v3 (ImageNet). Figure shows the original
explanations (first column) for the Junco bird. Progression from left to right indicates complete
randomization of network weights (and other trainable variables) up to that ‘block’ inclusive. We
show images for 17 blocks of randomization. Coordinate (Gradient, mixed_7b) shows the gradient
explanation for the network in which the top layers starting from Logits up to mixed_7b have been
reinitialized. The last column corresponds to a network with completely reinitialized weights.



Task 2: Data randomization

True
Labels
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Labels
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Summary

* Some existing saliency methods are independent both of the model
and of the data generating process

* Such methods are unreasonable, because it doesn’t correctly reflect
the quality of the model and the method.



