# Black-box Generation of Adversarial Text Sequences to Evade Deep Learning Classifiers

By: Ji Gao, Jack Lanchantin, Mary Lou Soffa, Yanjun Qi

Presented by: Jennifer Fang [Week 02]

Department of Computer Science: University of Virginia

@ https://qdata.github.io/deep2Read/

#### Black-box Generation of Adversarial Text Sequences to Evade Deep Learning Classifiers

**Goal:** Create a new algorithm for black box testing to generate small text perturbations to cause deep-learning classifiers to misclassify a text input.

The new algorithm created is called DeepWordBug.

#### Black Box vs. White Box Testing

- Black box testing: testing as if you are a hacker i.e. no knowledge of the inside workings, don't know details of learned models or feature representations of inputs
  - Can only manipulate input samples by testing and observing a classification model's outputs
  - Usually it's easy to query a model
  - But there's no access to the inner structure of the models,
    which makes black box more applicable than white box
- White box testing: testing with full knowledge of the application
- Both black and white box testing cannot modify the model

#### Key Terms

- Hyperparameter: a parameter whose value is set before the experiment
  - Instead of deriving its value through training, this parameter has a set value
- Adversarial samples: inputs intentionally designed to cause the model to make a mistake
- Transferability: an important property where samples that are generated for one model can also be used to fool another DNN model

#### Goal of DeepWordBug

**Proven that:** Adding small modifications to text inputs can fool deep learning classifiers

Question to answer: Are deep learning classifiers robust?

Results have implications in text-based spam detection.

Two types of modifications to text input

$$\mathbf{x'} = \mathbf{x} + \Delta \mathbf{x}, \ \|\Delta \mathbf{x}\|_p < \epsilon, \ \mathbf{x'} \in \mathbb{X}$$
$$F(\mathbf{x}) \neq F(\mathbf{x'}) \text{ or } F(\mathbf{x'}) = t$$

Targeted Untargeted

#### DeepWordBug Example



#### Differences of text vs. pictures

- 1. Text input x is symbolic. Perturbation on x is hard to define.
- No metric has been defined to measure text difference.
  Lp norms makes sense on continuous pixel values, but they don't make sense on texts since they are discrete.

### Basis of DeepWordBug

- 1. Determine the important tokens to change.
  - Use scoring functions to evaluate
- 2. Change those tokens
  - Create "imperceivable" changes which can evade a target deep learning classifier

#### **Scoring Functions**

- 1. Replace-1 Score
  - Replace one x<sub>i</sub> with x<sub>i</sub>'
  - $R1S(x_i) = F(x_1, x_2, ..., x_{i-1}, x_i, ..., x_n)$ -  $F(x_1, x_2, ..., x_{i-1}, x_i', ..., x_n)$

#### 2. Temporal Head Score

 Difference between the model's prediction score as it reads up to the i<sup>th</sup> token and as it reads up to the i-1<sup>th</sup> token

• THS(
$$x_i$$
) = F( $x_1$ ,  $x_2$ , ...,  $x_{i-1}$ ,  $x_i$ ) - F( $x_1$ ,  $x_2$ , ...,  $x_{i-1}$ )



## Scoring Functions

- 3. Temporal Tail Score
  - The complement of the THS
  - Compares the difference between two trailing parts of a sentence, the one containing a certain token versus the one that does not.
  - $TTS(x_i) = F(x_i, x_{i+1}, x_{i+2}, \dots, x_n) F(x_{i+1}, x_{i+2}, \dots, x_n)$

#### 4. Combination Score

- THS and TTS model from opposing sides, so the Combination Score combines the two
- $CS(x_i) = THS(x_i) + \lambda(TTS(x_i))$
- $\lambda$  is a hyperparameter



#### Text Transformations

- 1. Swap: Swap two adjacent letters in the word.
- 2. Substitution: Substitute a letter in the word with a random letter.
- 3. Deletion: Delete a random letter from the word.
- 4. Insertion: Insert a random letter in the word.

| Original |               | Swap     | Substitution | Deletion | Insertion |
|----------|---------------|----------|--------------|----------|-----------|
| Team     | $\rightarrow$ | Taem     | Texm         | Tem      | Tezam     |
| Artist   | $\rightarrow$ | Artsit   | Arxist       | Artst    | Articst   |
| Computer | $\rightarrow$ | Comptuer | Computnr     | Compter  | Comnputer |

Table 1: Different transformer functions and their results.

### DeepWordBug Algorithm

Algorithm 1 DeepWordBug Algorithm

**Input:** Input sequence  $\mathbf{x} = x_1 x_2 \dots x_n$ , RNN classifier  $F(\cdot)$ , Scoring Function  $S(\cdot)$ , Transforming function  $T(\cdot)$ , maximum allowed pertubation on edit distance  $\epsilon$ .

```
1: for i = 1..n do
```

```
2: scores[i] = S(x_i; \mathbf{x})
```

```
3: end for
```

4: Sort *scores* into an ordered index list:  $L_1 .. L_n$  by descending

score

```
5: \mathbf{x'} = \mathbf{x}
```

```
6: cost = 0, j = 1
```

- 7: while  $\cos t < \epsilon$  do
- 8:  $cost = cost + Transform(x'_{L})$
- 9: j + +
- 10: end while
- 11: Return x'

Apply Scoring Function

#### Experiment Setup

- Datasets: 7 large scale datasets, including Enron Spam Dataset
- 2. Target models: 2 well trained models
  - Word-LSTM: a Bi-directional LSTM, which contains an LSTM in both directions (reading from first word to last and from last word to first) [used 4 different transformers]
  - Char-CNN: uses one-hot encoded characters as inputs to a 9-layer convolutional network [only used substitution transformer]

#### **Comparison** methods

- 1. Random (baseline): randomly selects tokens as targets
- 2. Gradient (baseline): uses full knowledge of the model to find most important tokens
- 3. DeepWordBug: use previously described white-box scoring functions to find most important tokens: Replace 1 Scoring, Temporal Head Score, Temporal Tail Score, Combined Score

#### Additional Parameter

 $\epsilon$  = maximum allowed perturbation; maximum allowed edit distance (in characters)

Word-LSTM Model

|                        |          |        | Base     | lines    |          | WordBug   |          |               |          |               |          |          |          |
|------------------------|----------|--------|----------|----------|----------|-----------|----------|---------------|----------|---------------|----------|----------|----------|
|                        | Original | Random |          | Gradient |          | Replace-1 |          | Temporal Head |          | Temporal Tail |          | Combined |          |
|                        | Acc(%)   | Acc(%) | Decrease | Acc(%)   | Decrease | Acc(%)    | Decrease | Acc(%)        | Decrease | Acc(%)        | Decrease | Acc(%)   | Decrease |
| AG's News              | 90.5     | 89.3   | 1.33%    | 48.5     | 10.13%   | 36.1      | 60.08%   | 42.5          | 53.01%   | 21.3          | 76.48%   | 24.8     | 72.62%   |
| Amazon Review Full     | 62.0     | 61.1   | 1.48%    | 55.7     | 10.13%   | 18.6      | 70.05%   | 27.1          | 56.30%   | 17.0          | 72.50%   | 16.3     | 73.76%   |
| Amazon Review Polarity | 95.5     | 93.9   | 1.59%    | 86.9     | 8.93%    | 40.7      | 57.36%   | 58.5          | 38.74%   | 42.6          | 55.37%   | 36.2     | 62.08%   |
| DBPedia                | 98.7     | 95.2   | 3.54%    | 74.4     | 24.61%   | 28.8      | 70.82%   | 56.4          | 42.87%   | 28.5          | 71.08%   | 25.3     | 74.32%   |
| Yahoo! Answers         | 73.4     | 65.7   | 10.54%   | 50.0     | 31.83%   | 27.9      | 61.93%   | 34.9          | 52.45%   | 26.5          | 63.86%   | 23.5     | 68.02%   |
| Yelp Review Full       | 64.7     | 60.9   | 5.86%    | 53.2     | 17.76%   | 23.4      | 63.83%   | 36.6          | 43.47%   | 20.8          | 67.85%   | 24.4     | 62.28%   |
| Yelp Review Polarity   | 95.9     | 95.4   | 0.55%    | 88.4     | 7.85%    | 37.8      | 60.63%   | 70.2          | 26.77%   | 34.5          | 64.04%   | 46.2     | 51.87%   |
| Enron Spam Email       | 96.4     | 67.8   | 29.69%   | 76.7     | 20.47%   | 39.1      | 59.48%   | 56.3          | 41.61%   | 25.8          | 73.22%   | 48.1     | 50.06%   |
| Mean                   |          |        | 6.82%    |          | 16.46%   |           | 63.02%   |               | 44.40%   |               | 68.05%   |          | 64.38%   |
| Median                 |          |        | 2.57%    |          | 13.95%   |           | 61.28%   |               | 43.17%   |               | 69.46%   |          | 65.15%   |
| Standard Deviation     |          |        | 9.81%    |          | 8.71%    |           | 4.94%    |               | 9.52%    |               | 6.77%    |          | 9.56%    |

#### **Char-CNN Model**

|                        |          | Baselines |            |          |          | WordBug   |          |               |          |               |          |          |          |
|------------------------|----------|-----------|------------|----------|----------|-----------|----------|---------------|----------|---------------|----------|----------|----------|
|                        | Original | Random    |            | Gradient |          | Replace-1 |          | Temporal Head |          | Temporal Tail |          | Combined |          |
|                        | Acc(%)   | Acc(%)    | % Decrease | Acc(%)   | Decrease | Acc(%)    | Decrease | Acc(%)        | Decrease | Acc(%)        | Decrease | Acc(%)   | Decrease |
| AG's News              | 90.0     | 82.4      | 8.36%      | 62.3     | 30.74%   | 30.8      | 65.80%   | 74.1          | 17.66%   | 58.6          | 34.90%   | 60.4     | 32.88%   |
| Amazon Review Full     | 61.1     | 51.0      | 16.53%     | 47.0     | 23.04%   | 25.6      | 58.17%   | 58.1          | 4.89%    | 32.5          | 46.79%   | 35.0     | 42.70%   |
| Amazon Review Polarity | 95.2     | 93.4      | 1.91%      | 84.3     | 11.41%   | 46.4      | 51.27%   | 91.6          | 3.79%    | 70.9          | 25.48%   | 73.5     | 22.83%   |
| DBPedia                | 98.4     | 95.8      | 2.58%      | 92.9     | 5.60%    | 74.9      | 23.91%   | 95.7          | 2.73%    | 88.2          | 10.37%   | 88.8     | 9.69%    |
| Yahoo! Answers         | 71.0     | 52.2      | 26.45%     | 43.5     | 38.76%   | 30.0      | 57.72%   | 56.8          | 20.05%   | 35.3          | 50.23%   | 36.6     | 48.50%   |
| Yelp Review Full       | 63.5     | 52.6      | 17.05%     | 45.7     | 28.06%   | 27.6      | 56.56%   | 51.3          | 19.10%   | 35.3          | 44.36%   | 38.2     | 39.74%   |
| Yelp Review Polarity   | 95.3     | 91.2      | 4.31%      | 84.8     | 11.03%   | 42.8      | 55.05%   | 86.5          | 9.16%    | 71.9          | 24.51%   | 71.1     | 25.33%   |
| Enron Spam Email       | 95.6     | 85.5      | 10.56%     | 69.0     | 27.84%   | 76.4      | 20.13%   | 85.1          | 11.03%   | 78.7          | 17.68%   | 75.4     | 21.14%   |
| Mean                   |          |           | 10.97%     |          | 22.06%   |           | 48.58%   |               | 11.05%   |               | 31.79%   |          | 30.35%   |
| Median                 |          |           | 9.46%      |          | 25.44%   |           | 55.80%   |               | 10.10%   |               | 30.19%   |          | 29.11%   |
| Standard Deviation     |          |           | 8.54%      |          | 11.53%   |           | 16.91%   |               | 7.10%    |               | 14.56%   |          | 12.93%   |

Table 5: Effectiveness of WordBug on 8 Datasets using the Word-LSTM and Char-CNN model. Acc is the accuracy of the method and Decrease is the percent decrease of the accuracy by using the specified attacking method over the original accuracy. Word-LSTM uses Substitution transformer. All results are under maximum edit distance difference 30 ( $\epsilon = 30$ ).

#### Decrease in Performance





#### Results

- 1. Accuracy: reduced 68% performance of the Word-LSTM model and 48% performance of the Char-CNN model
- 2. Influence of the Scoring Function: very important
  - a. DeepWordBug's scoring is better than the gradient
  - b. Without scoring (random case), adversarial performance is low
- 3. Transferable? Yes, even for models with different word embedding
- 4. Influence of Transformation Function: wasn't much difference within the functions; having a good scoring function is more important
- 5. Influence of Dictionary size: low; works for all dictionary sizes
- 6. Probability of classifications: 94.6% of classifications were classified with > 0.9 confidence for Word-LSTM model on the Enron Spam Dataset (# classes = 2),  $\epsilon$  = 30

#### Transferability and Confidence





Figure 12: How strong the machine learning model will believe the wrong answer lead by the adversarial sample, the x-axis are the confidence range and the y-axis are the probability distribution. The result is generated using Word-LSTM model on the Enron Spam Dataset (Number of classes = 2), with edit distance maximum  $\epsilon = 30$ 

### Applications

Adversarial training: with training on DeepWordBug, adversarial accuracy improves from 12% to 62%

Autocorrection: reduces the performance of adversarial samples; can combat this with stronger transformation functions such as substitution-2 and deletion-2

#### Why DeepWordBug Works

- When changes are made to a word, the word becomes unknown, which map to the unknown embedding vector
- Small changes can thus make a big impact
- Adversarial samples are probably decipherable to humans, but not to models
- Area for ML to catch up with humans

#### Advantages:

- 1. **Black-box:** DeepWordBug generates adversarial samples in a pure black-box manner.
- 2. **Performance:** DeepWordBug results in a 68% decrease on average from the original classification accuracy for a word-level LSTM model and 48% decrease on average for a character-level CNN model.
  - Results are transferable and are not reliant on dictionary size or transformation technique used
- 3. Applications: adversarial training is successful; by using DeepWordBug generated samples, model accuracy on generated adversarial samples increases from 12% to 62%