
Black-box Generation of
Adversarial Text
Sequences to Evade Deep
Learning Classifiers
By: Ji Gao, Jack Lanchantin, Mary Lou Soffa, Yanjun Qi

Presented by: Jennifer Fang [Week 02]

Department of Computer Science: University of Virginia

@ https://qdata.github.io/deep2Read/

https://qdata.github.io/deep2Read/

Black-box Generation of Adversarial Text
Sequences to Evade Deep Learning Classifiers

Goal: Create a new algorithm for black box testing to

generate small text perturbations to cause deep-learning

classifiers to misclassify a text input.

The new algorithm created is called DeepWordBug.

Black Box vs. White Box Testing
● Black box testing: testing as if you are a hacker i.e. no

knowledge of the inside workings, don’t know details of learned

models or feature representations of inputs

○ Can only manipulate input samples by testing and observing

a classification model’s outputs

○ Usually it’s easy to query a model

○ But there’s no access to the inner structure of the models,

which makes black box more applicable than white box

● White box testing: testing with full knowledge of the

application

● Both black and white box testing cannot modify the model

Key Terms

● Hyperparameter: a parameter whose value is set before the

experiment

○ Instead of deriving its value through training, this

parameter has a set value

● Adversarial samples: inputs intentionally designed to cause the

model to make a mistake

● Transferability: an important property where samples that are

generated for one model can also be used to fool another DNN

model

Goal of DeepWordBug

Proven that: Adding small modifications to text inputs can

fool deep learning classifiers

Question to answer: Are deep learning classifiers robust?

Results have implications in text-based spam detection.

Two types of modifications to text input

Targeted Untargeted

DeepWordBug Example

Differences of text vs. pictures

1. Text input x is symbolic. Perturbation on x is hard to

define.

2. No metric has been defined to measure text difference.

Lp - norms makes sense on continuous pixel values, but

they don’t make sense on texts since they are discrete.

Basis of DeepWordBug

1. Determine the important tokens to change.
● Use scoring functions to evaluate

2. Change those tokens
● Create “imperceivable” changes which can evade a target

deep learning classifier

Scoring Functions

1. Replace-1 Score
● Replace one x

i
 with x

i
’

● R1S(x
i
) = F(x

1
, x

2
, ..., x

i-1
, x

i
, ..., x

n
)

− F(x
1
, x

2
, ..., x

i-1
, x

i
′, ..., x

n
)

2. Temporal Head Score

● Difference between the model’s prediction

score as it reads up to the ith token and

as it reads up to the i-1th token

● THS(x
i
) = F(x

1
, x

2
, ..., x

i-1
, x

i
) − F(x

1
,

x
2
, ..., x

i-1
)

Scoring Functions

3. Temporal Tail Score

● The complement of the THS

● Compares the difference between two trailing parts of a sentence, the one

containing a certain token versus the one that does not.

● TTS(x
i
) = F(x

i
, x

i+1
, x

i+2
, ..., x

n
) − F(x

i+1
, x

i+2
, ..., x

n
)

4. Combination Score

● THS and TTS model from opposing sides, so the Combination Score combines the

two

● CS(x
i
) = THS(x

i
) + λ(TTS(x

i
))

● λ is a hyperparameter

Text Transformations

1. Swap: Swap two adjacent letters in the word.

2. Substitution: Substitute a letter in the word with a

random letter.

3. Deletion: Delete a random letter from the word.

4. Insertion: Insert a random letter in the word.

DeepWordBug Algorithm

Apply Scoring Function
|
|
|
|
|
|
Transform Text
|
|
Return x’

Experiment Setup

1. Datasets: 7 large scale datasets, including Enron Spam

Dataset

2. Target models: 2 well trained models

- Word-LSTM: a Bi-directional LSTM, which contains an LSTM

in both directions (reading from first word to last and

from last word to first) [used 4 different transformers]

- Char-CNN: uses one-hot encoded characters as inputs to a

9-layer convolutional network [only used substitution

transformer]

Comparison methods

1. Random (baseline): randomly selects tokens as targets

2. Gradient (baseline): uses full knowledge of the model to

find most important tokens

3. DeepWordBug: use previously described white-box scoring

functions to find most important tokens: Replace 1

Scoring, Temporal Head Score, Temporal Tail Score,

Combined Score

Additional Parameter

ϵ = maximum allowed perturbation; maximum allowed edit
distance (in characters)

Decrease in Performance

Results

1. Accuracy: reduced 68% performance of the Word-LSTM model and 48%

performance of the Char-CNN model

2. Influence of the Scoring Function: very important

a. DeepWordBug’s scoring is better than the gradient

b. Without scoring (random case), adversarial performance is low

3. Transferable? Yes, even for models with different word embedding

4. Influence of Transformation Function: wasn’t much difference within

the functions; having a good scoring function is more important

5. Influence of Dictionary size: low; works for all dictionary sizes

6. Probability of classifications: 94.6% of classifications were

classified with > 0.9 confidence for Word-LSTM model on the Enron

Spam Dataset (# classes = 2), ϵ = 30

Transferability and Confidence

Applications

Adversarial training: with training on DeepWordBug,

adversarial accuracy improves from 12% to 62%

Autocorrection: reduces the performance of adversarial

samples; can combat this with stronger transformation

functions such as substitution-2 and deletion-2

Why DeepWordBug Works

- When changes are made to a word, the word becomes

unknown, which map to the unknown embedding vector

- Small changes can thus make a big impact

- Adversarial samples are probably decipherable to humans,

but not to models

- Area for ML to catch up with humans

Advantages:

1. Black-box: DeepWordBug generates adversarial samples in a pure black-box
manner.

2. Performance: DeepWordBug results in a 68% decrease on average from the
original classification accuracy for a word-level LSTM model and 48%

decrease on average for a character-level CNN model.

- Results are transferable and are not reliant on dictionary size or

transformation technique used

3. Applications: adversarial training is successful; by using DeepWordBug
generated samples, model accuracy on generated adversarial samples increases

from 12% to 62%

