Summary of Paper:
Adversarial Playground

By: Andrew Norton and Yanjun Qi
Presented by: Jennifer Fang [Week 01]

Department of Computer Science: University of Virginia

https://qdata.github.io/deep2Read/

ADVERSARIAL-PLAYGROUND: A Visualization
Suite Showing How Adversarial Examples
Fool Deep Learning

Goal: Visualize the efficacy of current adversarial methods
against convolutional NN systems through a web
visualization tool.

Make this tool educational, modular, and interactive.

Background

Adversarial examples: maliciously generated images formed by
making imperceptible modifications; threat to security

Falls into evasion attacks; those which aim to create inputs to
be misclassified

2 types:

1. Targeted: x5=m§§gﬂﬂx—sH:fQ)=yJ target a class yt

2. Untargeted: X“=Mi§mﬂh—ﬂﬂrf&%#f@ﬂ just want to misclassify

Fast Jacobian Saliency Map Approach

Use controls on right to update and view generated adversarial sample.

v . Options
Original Sample Adversarial Sample

Attacking Power Parameter:

Seed Image:

BAdEBR@oRB
BRERBA

Target Class:

Generate Adversarial Sample

Original Classification Adversarial Classifications

T~ 'R "=~ =
) 0 2 3 4 5 6 7 G 9 = 0 1 2 3 5 6 7 8 9

Aaversary Class

Design Decisions

For speed:

1. Utilized client and server-side code
2. Rendered images in the client
3. Implemented a faster variant of JSMA attack

For usability:

1. Made Adversarial Playground a web-based application; no
need for downloading

Benefits of Adversarial Playground

1.

Educational

a. Non-experts can understand why adversarial examples fool
CNN-based image classifiers.

b. Helps security experts explore more vulnerabilities.

c. Accessible to casual users

Interactive

a. Responds to user requests, and does so quickly.

Modular

a. Experts can easily plug it into their frameworks as a
module

b. Experts can easily add other DNN models into the
visualization

Server Side Client Side
‘Adversarial Algorithm.

Module Transfer via ‘ —'“_’ ‘

\ AJAX - 'Submit |

User selects
\ hyperparameters

®
Tensor

Generates
adversarial sample

CNN/DNN Module \

JSON Response

{ py) \ JavaScript plot of sample and
R de A K
S\ classifier output

¥ Y

Figure 2: ADVERSARIAL-PLAYGROUND System Sketch

Improvements to JSMA

JSMA: creates a targeted attack

FISMA changes: only considers pairs of features (p, q) such
that p is in the top k (small constant chosen by us)
features ranked by derivative in the p-coordinate

Algorithm 1 Fast Jacobian Saliency Map Apriori Selection
VF(X) is the forward derivative, I the features still in the search
space, ¢ the target class, and k is a small constant

Input: VF(X), I, ¢,k
1: K = argtop,cr (— a%(p&; k) > Changed for FISMA
2: for each pair (p,q) € K xI', p # q do > Changed for FISMA

Performance of new FIJSMA (evasion rate)

For FIJSMA’s with small k’s, with the 9 perturbation shown on

the top row, FISMA evasion rate does not deviate more than 0.07

X 10% 15% 20% 25%
JSMA Evasion Rate 0.658 0.824 0.867 0.879
FJSMA Evasion Rate [k = 10%] 0.583 | 0.777 | 0.823 | 0.826
FJSMA Evasion Rate [k = 15%] 0.613 | 0.816 | 0.867 | 0.871
FJSMA Evasion Rate [k = 20%] 0.633 | 0.833 | 0.878 | 0.887
FJSMA Evasion Rate [k = 30%] 0.638 | 0.844 | 0.896 | 0.901

Performance of new FIJSMA (time)

FISMA time is ~ 33% to 50% faster as p increases from 10%

to 25%

8 10% 15% | 20% | 25%
JSMA Time (s) 0.606 | 0.745 | 0.807 | 0.803
FISMA Time [k = 10%] (s) | 0.411 | 0.468 | 0.490 | 0.485
FJISMA Time [k = 15%] (s) | 0.414 | 0.473 | 0.483 | 0.484
FISMA Time [k =20%] (s) | 0.415 | 0.466 | 0.482 | 0.483
FISMA Time [k =30%] (s) | 0.415 | 0.464 | 0.490 | 0.485

Conclusion + Future work

Conclusion: Adversarial Playground provides a quick, easy
to use webapp to visualize the performance of adversarial
examples against DNNs.

Future work:

e Support more evasion methods
e Explore more time-saving techniques to implement above
e Use different datasets CIFAR, ImageNet, MNIST, etc ...

