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Introduction

e The use of drug combinations, termed polypharmacy, is common to treat patients with complex
diseases or co-existing conditions. However, a major consequence of polypharmacy is a much
higher risk of adverse side effects for the patient.

e Polypharmacy side effects emerge because of drug-drug interactions, in which activity of one drug
may change, favorably or unfavorably, if taken with another drug. The knowledge of drug
interactions is often limited because these complex relationships are rare, and are usually not

observed in relatively small clinical testing.

e Discovering polypharmacy side effects thus remains an important challenge with significant

implications for patient mortality and morbidity.



Present work

e Decagon, a method for predicting side effects of drug pairs. We model the problem by constructing

a large two-layer multimodal graph of protein-protein interactions, drug-protein interactions, and

drug-drug interactions (i.e., side effects).

e Each drug-drug interaction is labeled by a different edge type, which signifies the type of the side
effect. We then develop a new multirelational edge prediction model that uses the multimodal
graph to predict drug-drug interactions as well as their types. Our model is a convolutional graph

neural network that operates in a multirelational setting.
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Observations

1. There is a wide range in how frequently certain side effects occur in drug combinations. We find that more than
53% of polypharmacy side effects are known to occur in less than 3% of the documented drug combinations. As a
result, predicting rarer side effects becomes a challenging task, and thus it is important to develop an end-to-end
approach such that the model is able to share information and learn from all side effects at once.

2. Polypharmacy side effects do not appear independently of one another in drug combinations, suggesting that joint
modeling over multiple side effects can aid in the prediction task. A prediction model should leverage
dependence between side effects and be able to re-use the information learned about the molecular basis of one
side effect to better understand the molecular basis of another side effect.

3. the relationship between proteins targeted by a drug pair and occurrence of side effects
a. More than 68% of drug combinations have zero target proteins in common, suggesting it is important to use
protein-protein interaction information to “connect” different proteins targeted by different drugs.
b. Random drug pairs have smaller overlap in targeted proteins than co-prescribed drugs
c. This trend is unequally observed across different side effects



Graph Convolutional Encoder

In each layer, Decagon propagates latent node feature information
across edges of the graph, while taking into account the type (relation) of A GeN per-layer update for a single drug node (in blue)
an edge (Schlichtkrull et al., 2017). A single layer of this neural network

model takes the following form: , " kl
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where hl(-k) € R4(k) is the hidden state of node v; in the k-th layer
of the neural network with d(¥) being the dimensionality of this layer’s

representation, r is a relation type, and matrix Wﬁk) is a relation-type

specific parameter matrix. Here, ¢ denotes an non-linear element-wise r,  Bradycardia effect

activation function (i.e., a rectified linear unit), which transforms the

representations to be used in the layer of the neural model, ¢;’ and ci.
are normalization constants, which we choose to be symmetric ¢, =

1/7/INE||NY | and ¢i. = 1/|NE| with N denoting the set of neighbors
of node v; under relation r. Importantly note that the sum in Eq. | ranges

rug target relation

only over the neighbors N of a given node 7 and thus the computational

architecture (i.e., the neural network) is different for every node. Figure 3A



Tensor Factorization Decoder

The goal of decoder is to reconstruct labeled edges in GG by relying on
learned node embeddings and by treating each label (edge type) differently.
In particular, decoder scores a (v;, r, v; )-triple through a function g whose
goal is to assign a score g(v;, 7, v;) representing how likely it is that drugs
v; and v; are interacting through a relation/side effect type r (Figure 3B).
Using embeddings for nodes 7 and j returned by Decagon’s encoder
(Section 4.1) z; and z;, the decoder predicts a candidate edge (v, 7, v5)
through a factorized operation:

ziTDrRDrzj if v; and v; are drugs
g(vi,r,v5)= ziTMrzj if v; and v; are both proteins, or, ()

v; and v; are a protein and a drug

followed by the application of a sigmoid function o to compute probability
of edge (vi, 7, v;):

i = p((vi,m,v5) € R) = o(g(vi,,v:). ©
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Introduction

®  Protein post-translational modifications (PTMs) regulate cellular functions in various ways: catalyzing enzymatic activities,
conferring substrate specificity to control allosteric interactions, mediating interactions with other molecules such as DNA,
co-factors, and lipids, and localizing proteins to organelles.

®  With advances in enrichment techniques for PTMs, high-resolution mass spectrometry (MS) has now become the method of
choice to experimentally detect and quantify major PTMs at a proteome scale. A wealth of PTM data arising from tandem
MS/MS experiments has been curated and shared in public databases such as PhosphoSitePlus (PSP),3 PHOSIDA 4 and
Uniprot,S and some major PTMs such as phosphorylation and ubiquitination have been mapped for multiple species.

®  For instance, as of December 2017, the PSP database described ~240 000 phosphorylation and ~22 000 ubiquitination sites for
>20 000 different human proteins.
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Performance evaluation of the linear SVMs across five PTM types. The number of true

positive sites used in the 10-fold cross-validation is about half the amount of data present in
the PSP database after removal of redundant protein sequences and those that do not have

secondary structure information from SPIDER3. AUC - area-under-the-curve; MCC — the

highest Matthew's correlation coefficient at all score thresholds; sensitivity/specificity at score
threshold corresponding to the highest MCC value

PTM type No. of proteins No. of PSP sites Window size 25
AUC MCC Sensitivity Specificity

Acetylation (K) 3729 10479 0.66 0.25 0.61 0.64
Methylation (K) 1521 2566 0.74 0.39 0.61 0.76
Ubiquitination (K) 4874 22 592 064 0.22 0.67 0.54
SUMOylation (K) 1020 2996 0.77 0.42 0.63 0.79
Methylation (R) 2301 5450 0.79 0.47 0.62 0.84
Phosphorylation (S) 8510 76 008 0.74 036 0.70 0.66
Phosphorylation (T) 6982 28359 0.72 033 0.66 0.66
Phosphorylation (Y) 6097 18 645 0.70 0.30 0.72 0.58







