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objects) e Clinical notes (free text)

e Lab tests/results
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EHRSs

e Primary use: bookkeeping, hospital administration
e Secondary uses:
o Medical concept extraction
Patient trajectory modeling
Disease inference
Clinical decision support systems
Deidentification
Phenotyping

O O O O O
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EHR Analysis

e Traditional: logistic regression, random forests,
SVM

e Recent: MLP, Autoencoder, RBM, Deep Belief
Nets, CNN, RNN, GRU, and LSTM

e Most “Deep EHR” papers published in last 3 years
o Several hundred total



Roadmap

1. Background

2. Motivation

3. Survey of Recent Advances in “Deep EHR”

4. Future Directions




Roadmap

1. Background

2. Motivation

3. Survey of Recent Advances in “Deep EHR”

4. Future Directions




Motivation

e (Catalog advances

e High-level overview of what’s been going on in EHR
analysis in the last few years

e [uture directions
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Deep EHR Overview
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Deep EHR Overview

Deep EHR Deep EHR: Application Areas
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Deep EHR Overview

Deep EHR: Technical Methods
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Deep EHR Overview

Task Subtasks Input Models
Data
(1) Single Concept Extraction LSTM, Bi-LSTM, GRU, CNN
; . (2) Temporal Event Extraction Clinical RNN + Word Embedding
Informana, BXupCuon (3) Relation Extraction Notes AE
(4) Abbreviation Expansion Custom Word Embedding
: ; (1) Concept Representation Medical RBM, Skip-gram, AE, LSTM
Representingn Leatnimng (2) Patient Representation Codes RBM, Skip-gram, GRU, CNN, AE
g = (1) Static Prediction 5 AE, LSTM, RBM, DBN
Outcome Prediction (2) Temporal Prediction Mixed LSTM
. (1) New Phenotype Discovery " AE, LSTM, RBM, DBN
EHENoyRuE (2) Improving Existing Definitions Mized LSTM
De-identification Clinical text de-identification Clinical Bi-LSTM, RNN + Word Embedding

Notes
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Future Directions: Representations

e Representations in light large amount of heterogeneity

e Heavy focus on clinical codes

e Many things are not incorporated into
representations/embeddings

e Clinical text is under-utilized

e “Holy grail”: unified representation




Future Directions: Benchmarks

Lack of universal benchmarks

Difficult reproducibility

Everyone claims “state-of-the-art performance”
Proprietary data sets

Hyperparameters can make or break an algorithm



Future Directions: Interpretability

e Models need to be transparent and trustworthy
e Explored so far. maximum activation, clustering
illustrations, word clouds, heat maps, “Mimic learning”



