Maximizing Subset Accuracy with Recurrent Neural Networks in Multi-label Classification @ NIPS17

https://qdata.github.io/deep2Read Presenter: Chao Jiang

Spring 2018

<code>https://qdata.github.io/deep2Read</code> Pres Maximizing Subset Accuracy with Recurrent I

Spring 2018 1 / 27

Related Work

Method

- Formulating Predicting Subsets as Sequence Prediction
- Determining Label Permutations
- Different RNN architectures

Experiments

Multi-label classification (MLC)

- Text classification task:
 - Article 1: news + science
 - Article 2: politics + novel
 - Article 3: news + sports
 - Article 4: ?

Formally, a set of N samples D = (x_n, y_n)^N_{n=1}, each of which consists of an input x ∈ X and its target y ∈ Y which are assumed to be *i.i.d* over a sample space X × Y, learning a function f that maps inputs to subsets of a label set L = {1, 2, ···, L}

Multi-label classification (MLC)

- A set of N samples D = (x_n, y_n)^N_{n=1}, each of which consists of an input x ∈ X and its target y ∈ Y
- $L = \{1, 2, \dots, L\}$: label set, all possible labels
- $T_n = |y_n|$: the size of the label set associated to x_n , how many labels x_n have
- $C = \frac{1}{T} \sum_{n=1}^{N} T_n$: the cardinality of *D*, average number of labels one sample has, usually much smaller than *L*
- y could be viewed as a binary vector of size L, i.e., $\hat{y} \in \{0,1\}^L$

Existing solutions

- label powerset (LP)
 - define each possible label combinations as a new class label, $S_L = \{\{1\}, \{1, 2\}, \dots, \{1, 2, 3, \dots, L\}\}$, then, addresses MLC as a multi-class classification problem with $min(N, 2^L)$ possible labels such that

$$P(y_1, y_2, \cdots, y_L|x) \xrightarrow{LP} P(y_{LP} = k|x)$$

- Disadvantage 1: training LP models becomes intractable for large-scale problems with an increasing number of labels in S_L
- Disadvantage 2: even if the number of labels L is small enough, the problem is still prone to suffer from data scarcity because each label subset in LP will in general only have a few training instances
- binary relevance (BR)
 - Converting into a binary classification problem for each label

 Using PCC to learn the joint probability of labels, which decomposes the joint probability into L conditionals:

$$P(y_1, y_2, \cdots, y_L | x) = \prod_{i=1}^{L} P(y_i | y_{< i}, x)$$

where $y_{<i} = \{y_1, \dots, y_{i1}\}$ denotes a set of labels that precede a label y_i .

 For training PCCs, L functions need to be learned independently to construct a probability tree with 2^L leaf nodes.

- Disadvantage 1: obtaining the exact solution of such a probabilistic tree requires to find an optimal path from the root to a leaf node. A naive approach for doing so requires 2^L path evaluations in the inference step, and is therefore also intractable.
- Disadvantage 2: a cascadation of errors as the length of a chain gets longer
- Disadvantage 3: the classifiers f_i are trained independently according to a fixed label order, but in practice the label order in a chain has an impact on estimating the conditional probabilities

Method

• Formulating Predicting Subsets as Sequence Prediction

Formulating Predicting Subsets as Sequence Prediction

- LP and PCC could be viewed as means of subset accuracy maximization
- Similar to PCC, the joint probability can be computed as product of conditional probabilities, but unlike PCC, only T \ll L terms are needed.
- Maximizing the joint probability of positive labels can be viewed as subset accuracy maximization, the joint probability of positive labels can be written as

$$P(\mathbf{y}_{p_1}, \mathbf{y}_{p_2}, \cdots, \mathbf{y}_{p_T} | \boldsymbol{x}) = \prod_{i=1}^T P(\mathbf{y}_{p_i} | \boldsymbol{y}_{< p_i}, \boldsymbol{x}).$$

y can be represented as a set of 1-of-L vectors such that y = {y_{pi}}^T_{i=1} and y_{pi} ∈ R^L where T is the number of positive labels associated with an instance x

- this equation Eq.(3) has same form as prior equation EQ.(2) except for the number of output variables.
- While Eq.(2) is meant to maximize the joint probability over the entire 2^L configurations, Eq.(3) represents the probability of sets of positive labels and ignores negative labels.
- Advantage 1: the number of conditional probabilities to be estimated is dramatically reduced from L to T, search space from 2^L to L^T
- Advantage 2: reducing the length of the chain might be helpful in reducing the cascading errors

- As each instance has a different value for T, they need MLC methods which is capable of dealing with a different number of output targets across instances.
- Outputs a stop label indicating the end of the sequence
- What's more, such probability chain rule (use previous output as next input) fits for RNN structure

Method

• Formulating Predicting Subsets as Sequence Prediction

• Determining Label Permutations

- Because they use RNN to compute the joint probabilities, thus the order of the labels need to be determined as a prior.
- They tried four different orders of labels:
 - f2r: from frequent to rare labels
 - r2f: from rare to frequent labels
 - topological sorting: if the label is given as a tree, do DFS to determine the order of the labels
 - reverse topological sorting

Method

- Formulating Predicting Subsets as Sequence Prediction
- Different RNN architectures

Figure 1: Illustration of PCC and RNN architectures for MLC. For the purpose of illustration, we assume T = 3 and x consists of 4 elements.

- Using neural networks to implement a probability classifier chain as baseline
- Using a fixed input representation computed from an instance x (average of all the word vectors).

- A RNN architecture that learns a sequence of L binary targets can be seen as a NN counterpart of PCC because its objective is to maximize Eq.(2) just like in PCC
- output is binary, length is L
- Using gated recurrent units (GRUs)

- A RNN architecture maximizing Eq.(3) to take advantage of the smaller label subset size T than L
- output size is L dimension, length is T
- Note that the key difference between RNN^b and RNN^m is whether target labels are binary targets y_i or 1-of-L targets y_i .
- Under the assumption that the hidden states hi preserve the information on all previous labels $y_{<i}$, learning RNN^b and RNN^m can be interpreted as learning classifiers in a chain

- An attention based encoder decoder network
- Indeed, EncDec is potentially more powerful than RNN^b and RNN^m because each prediction is determined based on the dynamic context of the input x unlike the fixed input representation \overline{x} used in PCC, RNN^b and RNN^m

Spring 2018 19 / 27

Figure 1: Illustration of PCC and RNN architectures for MLC. For the purpose of illustration, we assume T = 3 and x consists of 4 elements.

Spring 2018 20 / 27

Experimental Setup

Baselines:

- BR(NN)
- LP(NN)
- PCC (NN) (beam search with beam size of 5 is used at inference time)
- Another NN baseline, consider a feed-forward NN with binary cross entropy per label

Table 2: Summary of datasets. # training documents (N_{tr}) , # test documents (N_{ts}) , # labels (L), label cardinality (C), # label combinations (LC), type of label structure (HS).

DATASET	N_{tr}	N_{ts}	\boldsymbol{L}	C	LC	HS
Reuters-21578	7770	3019	90	1.24	468	-
RCV1-v2	781261	23149	103	3.21	14921	Tree
BioASQ	11431049	274675	26970	12.60	11673800	DAG

Example-based measures

- Subset accuracy (ACC): $ACC(y, \hat{y}) = \frac{1}{L} \sum_{j=1}^{L} \mathbb{1}[y = \hat{y}]$
- Hamming accuracy (HA) computes how many labels are correctly predicted in \hat{y} : $HA(y, \hat{y}) = \frac{1}{L} \sum_{j=1}^{L} \mathbb{1}[y_j = \hat{y}_j]$
- example-based F1-measure (ebF1): $ebF_1(y, \hat{y}) = \frac{2\sum_{j=1}^{L} y_j \hat{h}_j}{\sum_{i=1}^{L} y_i + \sum_{i=1}^{L} \hat{y}_i}$
- Label-based measures

 $\min F_1 \qquad \max F_1 \\ = \frac{\sum_{j=1}^L 2tp_j}{\sum_{j=1}^L 2tp_j + fp_j + fn_j} \qquad = \frac{1}{L} \sum_{j=1}^L \frac{2tp_j}{2tp_j + fp_j + fn_j} \qquad (8)$

Figure 2: Negative log-likelihood of RNNs on the validation set of Reuters-21578.

- *RNN^b* has trouble with the r2f label ordering, because the predictions for later labels depend on sequences that are mostly zero when rare labels occur at the beginning. Hence, the model sees only few examples of non-zero targets in a single epoch.
- both RNN^m and EncDec converge relatively faster than RNN^b and do obviously not suffer from the r2f ordering.

<code>https://qdata.github.io/deep2Read</code> Pres Maximizing Subset Accuracy with Recurrent I

Spring 2018 23 / 27

Figure 3: Performance of RNN models on the validation set of Reuters-21578 during training. Note that the x-axis denotes # epochs and we use different scales on the y-axis for each measure.

 no clear difference between the same type of models trained on different label permutations, except for RNN^b

Spring 2018 24 / 27

	ACC	HA	ebF_1	${ m mi}F_1$	${ m ma}F_1$		
No label permutations							
BR(NN)	0.7685	0.9957	0.8515	0.8348	0.4022		
LP(NN)	0.7837	0.9941	0.8206	0.7730	0.3505		
NN	0.7502	0.9952	0.8396	0.8183	0.3083		
	Frequent labels first $(f2r)$						
PCC(NN)	0.7844	0.9955	0.8585	0.8305	0.3989		
RNN^{b}	0.6757	0.9931	0.7180	0.7144	0.0897		
RNN^m	0.7744	0.9942	0.8396	0.7884	0.2722		
EncDec	0.8281	0.9961	0.8917	0.8545	0.4567		
Rare labels first $(r2f)$							
PCC(NN)	0.7864	0.9956	0.8598	0.8338	0.3937		
RNN^{b}	0.0931	0.9835	0.1083	0.1389	0.0102		
RNN^m	0.7744	0.9943	0.8409	0.7864	0.2699		
EncDec	0.8261	0.9962	0.8944	0.8575	0.4365		

Table 3: Performance comparison on Reuters-21578.

	ACC	HA	ebF_1	miF_1	maF_1		
	No label permutations						
BR(NN)	0.5554	0.9904	0.8376	0.8349	0.6376		
LP(NN)	0.5149	0.9767	0.6696	0.6162	0.4154		
NN	0.5837	0.9907	0.8441	0.8402	0.6573		
FastXML	0.5953	0.9910	0.8409	0.8470	0.5918		
Frequent labels first (f2r)							
PCC(NN)	0.6211	0.9904	0.8461	0.8324	0.6404		
RNN^m	0.6218	0.9903	0.8578	0.8487	0.6798		
EncDec	0.6798	0.9925	0.8895	0.8838	0.7381		
Rare labels first (r2f)							
PCC(NN)	0.6300	0.9906	0.8493	0.8395	0.6376		
RNN^m	0.6216	0.9903	0.8556	0.8525	0.6583		
EncDec	0.6767	0.9925	0.8884	0.8817	0.7413		
topological sorting							
PCC(NN)	0.6257	0.9904	0.8463	0.8364	0.6486		
RNN^m	0.6072	0.9898	0.8525	0.8437	0.6578		
EncDec	0.6761	0.9924	0.8888	0.8808	0.7220		
reverse topological sorting							
PCC(NN)	0.6267	0.9902	0.8444	0.8346	0.6497		
RNN^m	0.6232	0.9904	0.8561	0.8496	0.6535		
EncDec	0.6781	0.9925	0.8899	0.8797	0.7258		

Table 4: Performance comparison on RCV1-v2.

- Also comparing with FastXML, one of state-of-the-arts in extreme MLC.
- FastXML is designed to maximize top-k ranking measures such as preck for which the performance on frequent labels is important.

BioASQ

Table 5: Performance comparison on BioASQ.

	ACC	HA	${\sf eb}F_1$	${ m mi}F_1$	maF_1	
No label permutations						
FastXML	0.0001	0.9996	0.3585	0.3890	0.0570	
Frequent label first $(f2r)$						
RNN^m	0.0001	0.9993	0.3917	0.4088	0.1435	
EncDec	0.0004	0.9995	0.5294	0.5634	0.3211	
Rare labels first (<i>r2f</i>)						
RNN^m	0.0001	0.9995	0.4188	0.4534	0.1801	
EncDec	0.0006	0.9996	0.5531	0.5943	0.3363	
topological sorting						
$\mathbb{R}\mathbb{N}\mathbb{N}^m$	0.0001	0.9994	0.4087	0.4402	0.1555	
EncDec	0.0006	0.9953	0.5311	0.5919	0.3459	
reverse topological sorting						
RNN^m	0.0001	0.9994	0.4210	0.4508	0.1646	
EncDec	0.0007	0.9996	0.5585	0.5961	0.3427	

→ ∃ →