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Introduction
● Predictive ML models have widespread usage in genomics.
● Despite importance of these models, it is very difficult to share and exchange 

models effectively.
● No established standard for sharing trained models.
● Challenge: heterogeneity of genomics technologies, techniques and 

frameworks, many specific data pre-processing strategies, and ease-of use 
for practitioners not expert in machine learning

● What: API and repository of ready-to-use genomics models.
● Goal: foster the dissemination and use of machine learning models in 

genomics.
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Approach
● Standardized data handling (data-loaders) for genomic data types
● 2000 trained models on Github
● API for accessing models
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Benchmarking of Alternative Models Predicting 
Transcription Factor Binding
● Different modeling paradigms, including methods based on classical position 

weight matrices (PWM), gapped k-mer support vector machines (lsgkm-SVM) 
and deep learning (DeepBind, DeepSEA, and FactorNet)

● Kipoi model implementations derived from publications, trained by authors, 
and assessed on chromosome 8 which was not used in training. 

● Originally cumbersome task: different software frameworks, different file 
formats for input, different prediction formats, different software 
dependencies..





Improving Predictive Models of Chromatin 
Accessibility using Transfer Learning
● Transfer learning for adapting/reusing models for a similar task.
● Enables more rapid training, requires less data to train, and improves predictive 

performance compared to models trained from scratch.
● Example: edge detection for images or transcription factor motifs in genomics are 

repeat problems in DNN.
● Started with 431 biosamples, held-out 10, leaving 421 for training a genome-wide 

model for predicting chromatin accessibility.
● For 10 held-out samples, trained a new model while keeping all but last 2 layers fixed 

during training.
● Transfer model ~15.2% improvement in area under precision-recall curve compared to 

model initialized with random parameters.
● 2.8 epoch average vs 17.3 epoch average training improvement.





Predicting the Molecular Effects of Genetic Variants 
using Interpretation Plugins
● Perform variant annotation and  in-silico mutagenesis by contrasting model 

predictions for the reference allele and for the alternative allele. 
● If the model can be applied across the entire genome, such as chromatin 

accessibility models, sequences centered on the queried variants are 
extracted. 

● If the model can only be applied to regions anchored at specific genomic 
locations, such as splicing models at intron-exons junctions, only sequences 
extracted from valid regions that overlap with the variants of interest are used.

● Ease of use for plugins and feature importance algorithms.





Predicting Pathogenic Splice Variants by Combining 
Models
● Advantages of combining models include: (1) combined scores can cover 

multiple biological processes, and (2) they are more robust because they 
average out conflicting predictions of individual models.

● Combined models were i,ii) 5’ and 3’ MaxEntScan8 , a probabilistic model 
scoring donor and acceptor site regions that was trained on splice sites with 
cDNA support, iii) HAL9 , a k-mer based linear regression model scoring 
donor sites that was trained on a massively parallel reporter assay in which 
hundreds of thousands of random sequences probed the donor site sequence 
space9 , and iv) Labranchor, a deep-learning model scoring the region 
upstream of the acceptor site for possible branchpoint locations that was 
trained from experimentally mapped branchpoints.
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Discussion
● Unified interface to models, automated installation, and nightly tests.
● Repository and programmatic standard for sharing and reuse of trained 

models in genomics.
● Pre-computed predictions cannot be extended for new or different input data
● Trained models can be generative, data-modelling distributions. This saves 

space and time in computing and storing relevant results.
● API contribution brings balance between structure and no structure.
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Future Work
● Open challenges for key predictive tasks in genomics with platforms like 

DREAM or CAGI and make the best models available in Kipoi.
● Continuously update state-of-the-art models.
● More exploration of composite models to capture how genetic variation 

propagates through successive biological processes.
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