Learning Transferable Architectures
for Scalable Image Recognition

(CVPR 2018)

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, Quoc V. Le
Google Brain
https://qdata.github.io/deep2Read
Presenter: Arshdeep Sekhon

Fall 2018

https://qdata.github.io/deep2Read

Neural Architecture Search Categories

@ Search Space: which architectures can be represented in
principle.
@ Search Method: exploration-exploitation trade-off

e Estimating performance: reduction of cost

@ inspired by NAS by RL method
@ computationally expensive for large datasets

@ search for a good architecture on a proxy smaller dataset
(CIFAR-10), and then transfer the learned architecture to

ImageNet

@ inspired by NAS by RL method
@ computationally expensive for large datasets

@ search for a good architecture on a proxy smaller dataset
(CIFAR-10), and then transfer the learned architecture to
ImageNet

@ Design a new search space: NASNet Search Space

@ complexity of the architecture is independent of the depth of
the network and the size of input images

NASNet Search Space

@ all convolutional networks are composed of convolutional
layers (or cells) with identical structure but different weights.

@ Searching for the best convolutional architectures: reduced to
searching for the best cell structure.

@ Searching for the best cell structure has two benefits:

e faster than searching for an entire network architecture
o the cell itself is more likely to generalize to other problems

Method: Search Method

@ Search method: NAS

Method: Search Method

Search method: NAS

a controller recurrent neural network (RNN) samples child
networks with different architectures.

The child networks are trained to convergence to obtain some
accuracy on a held-out validation set.

The resulting accuracies are used to update the controller so
that the controller will generate better architectures over time.
The controller weights are updated with policy gradient

with probabilty p

Train a child network
The controller (RNN) "g'::;f:xi": :E':’
validation acouracy R

Figure 1. Overview of Neural Architecture Search [71]. A con-
troller RNN predicts architecture A from a search space with prob-
ability p. A child network with architecture A is trained to con-
vergence achieving accuracy R. Scale the gradients of p by R to
update the RNN controller.

Method: Search Space

@ the overall architectures of the convolutional nets are
manually predetermined

@ convolutional cells repeated many times where each
convolutional cell has the same architecture, but different
weights.

@ learn two types of cells:

o Normal Cell: convolutional cells that return a feature map of
the same dimension

e Reduction Cell: convolutional cells that return a feature map
where the feature map height and width is reduced by a factor
of two

o fixed architecture for CIFAR 10 and ImageNet
@ consider the number of motif repetitions N and the number of
initial convolutional filters as free parameters

Softmax

Reduction Cell | x 2

3x3 conv, stride 2

XN

Softmax

XN

xN

Method: combining search space and search method

@ each cell receives as input two initial hidden states h; and h;_1
which are the outputs of two cells in previous two lower layers
or the input image.

@ The controller RNN recursively predicts the rest of the
structure of the convolutional cell, given these two initial
hidden states.

@ The predictions of the controller for each cell are grouped into
B blocks,

@ where each block has 5 prediction steps made by 5 distinct
softmax classifiers

@ Select a hidden state from h;, hj_1 or from the set of hidden
states created in previous blocks.

@ Select a second hidden state from the same options as in Step
1.

© Select an operation to apply to the hidden state selected in
Step 1.

@ Select an operation to apply to the hidden state selected in
Step 2.

© Select a method to combine the outputs of Step 3 and 4 to
create a new hidden state

ew hidden layer!

first hidden state second hidden state combine hidden state

Select second
hidden state

Select operation for }\

Select operation for |\ | Select method to

Select one
hidden state

softmax
layer
7

T T

2x2 maxpool

\

\ \ \
\ \ |7_| \ |7_| \ \7_1 \ -amw
7 \ 7 \ N
- - -

controller
hidden layer

I [resrr-yrpva| , h 1
L repeat B times { ' ,h‘iwfn, |a7ye!f ,:

Figure 3. Controller model architecture for recursively constructing one block of a convolutional cell. Each block requires selecting 5
discrete parameters, each of which corresponds to the output of a softmax layer. Example constructed block shown on right. A convolu-
tional cell contains B blocks, hence the controller contains 5B softmax layers for predicting the architecture of a convolutional cell. In our
experiments, the number of blocks B is 5.

Method: operation choices

For the combining in Step 5:

1x3 then 3x1 convolution

3x3 dilated convolution

3x3 max pooling

7x7 max pooling

3x3 convolution

5x35 depthwise-seperable conv

identity

1x7 then 7x1 convolution

3x3 average pooling

5x5 max pooling

1x1 convolution

3x3 depthwise-separable conv
7x7 depthwise-separable conv

@ element wise addition

@ concatenation along filter dimension

Experiments: Top performing Reduction and Normal Cells

Normal Cell Reduction Cell

Figure 4. Architecture of the best convolutional cells (NASNet-A) with B = 5 blocks identified with CIFAR-10 . The input (white) is the
hidden state from previous activations (or input image). The output (pink) is the result of a concatenation operation across all resulting
branches. Each convolutional cell is the result of B blocks. A single block is corresponds to two primitive operations (yellow) and a
combination operation (green). Note that colors correspond to operations in Figure 3.

Controller

@ one-layer LSTM with 100 hidden units at each layer

@ 2 x 5B(=5) softmax predictions for the two convolutional
cells

@ Each of the 10B predictions of the controller RNN is
associated with a probability.

@ joint probability of a child network is the product of all
probabilities at these 10B softmaxes.

@ joint probability is used to compute the gradient for the
controller RNN.

@ The gradient is scaled by the validation accuracy of the child
network to update the controller RNN

@ so that controller assigns low probabilities for bad child
networks and high probabilities for good child.

@ use Proximal Policy Optimization policy gradient optimization

Results on CIFAR10

model | depth # params | error rate (%)
DenseNet (L = 40, k = 12) [26] 40 1.0M 524
DenseNet(L = 100, k = 12) [26] 100 7.0M 4.10
DenseNet (L = 100, k = 24) [26] 100 272M 3.74
DenseNet-BC (L = 100,k = 40) [26] 190 25.6M 3.46
Shake-Shake 26 2x32d [18] 2.9M 3.55
Shake-Shake 26 2x96d [18] 26 26.2M 2.86
Shake-Shake 26 2x96d + cutout [12] 26 262M 2.56
NAS v3[71] 39 7.M 4.47
NAS v3 [71] 39 37.4M 3.65
NASNet-A (6 @ 768) 3.3M 3.41
NASNet-A (6 @ 768) + cutout 3.3M 2.65
NASNet-A (7 @ 2304) 27.6M 2.97
NASNet-A (7 @ 2304) + cutout 27.6M 2.40
NASNet-B (4 @ 1152) 2.6M 3.73
NASNet-C (4 @ 640) 3.1M 3.59
Table 1. P of Neural i Search and other statc rt models on CIFAR-10. All results for NASNet are the mean
accuracy across 5 runs.
85 85
NASNetA (5 @ 4052) NASHetA (6 @ 4052)
- NASNrA (7 @ 1520) NI o
NASHetA (7 @ 1920)] - reepion restei2 @ ® Foyer
T 80 { masher (5 @ 1358 inospton-Restiet2 e & 20k T 8O {nasNerA (5 @ 1538 1ot RosNex:-101
@ OO i pesarsz © Soicein
5 Incaptons o s inception
3 i 2 Roshet 152
8 v 8 copton-
g 75| g g 75y, 8
NASNetA 4 @ 1058) = NaserA (s @ 1056)
g veG-16 g ves1e
§) e 5 o leme .
§ 701 o i § 701 @ ptons
65 65
0 10000 20000 30000 40000 0 20 40 60 80 100 120 140
Mult-Add operations (millions) # parameters (millions)

5. Accuracy versus computational demand (left) and number of

Results on ImageNet

Model image size | # parameters Mult-Adds | Top 1 Acc. (%) Top 5 Acc. (%)
Inception V2 [29] 224x224 112M 1.94B 74.8 92.2
NASNet-A (5 @ 1538) 299%299 109M 2358 78.6 942
Inception V3 [60] 299299 23.8M 572B 78.8 94.4
Xception [9] 299%299 22.8M 8.38B 79.0 94.5
Inception ResNet V2 [58] 299%299 55.8M 132B 80.1 95.1
NASNet-A (7 @ 1920) 299299 22.6M 4.93B 80.8 95.3
ResNeXt-101 (64 x 4d) [68] ~ 320x320 83.6M 315B 80.9 95.6
PolyNet [69] 331x331 92M 347B 813 95.8
DPN-131 [8] 320x320 79.5M 320B 8L5 95.8
SENet [25] 320%320 145.8M 423B 82.7 96.2
NASNet-A (6 @ 4032) 331x331 88.9M 238B 82.7 96.2
Table 2. Performance of architecture search and other published state-of-the-art models on ImageNet classification. Mult-Adds indicate
the number of ite multipl ions for a single image. Note that the ite multipl ions are
calculated for the image size reported in the table. Model size for [25] calculated from op i i
Model | #parameters Mult-Adds | Top 1 Acc. (%) Top 5 Acc. (%)
Inception V1 [59] 6.6M 1,448M 69.8 1 89.9
MobileNet-224 [24] 42M 560M 70.6 89.5
ShuffleNet (2x) [70] ~5M 524M 70.9 89.8
NASNet-A (4 @ 1056) 53M 564M 740 91.6
NASNet-B (4 @ 1536) 53M 488M 728 913
NASNet-C (3 @ 960) 4.9M 558M 725 91.0

Table 3. Performance on ImageNet classification on a subset of models operating in a constrained computational setting, ic., < 1.5B
multiply-accumulate operations per image. All models use 224x224 images. 1 indicates top-1 accuracy not reported in [59] but from
open-source implementation.

S — RL Top 1 Unique Models

3 = = RL Top 5 Unique Madels
=+ RLTop 25 Unique Models

— RS Top 1 Unique Models

Accuracy at 20 Epochs
° o o <o o
f<=] (=] [{=] © [{=]
(=] o - — n
o (%)) o [4)] o

0.895 - - RS Top § Unique Models
- RS Top 25 Unigue Models
0.890
0 10000 20000 30000 40000 50000

Number of Models Sampled
Figure 6. Comparing the efficiency of random search (RS) to re-
inforcement learning (RL) for learning neural architectures. The
x-axis measures the total number of model architectures sampled,
and the y-axis is the validation performance on CIFAR-10 after 20
epochs of training.

