Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation

(NIPS 2018)

Jiaxuan You, Bowen Liu, Rex Ying, Vijay Pande, Jure Leskovec Stanford University https://qdata.github.io/deep2Read Presenter: Arshdeep Sekhon

Fall 2018

- Generating novel graph structures that optimize given objectives while obeying some given underlying rules
- Challenge: optimize desired properties while incorporating highly complex and non-differentiable rules

- Graph Convolutional Policy Network (GCPN): generate molecules where the generation process can be guided towards specified desired objectives,
- Restrict the output space based on underlying chemical rules
- graph representation, reinforcement learning and adversarial training in a single unified framework.

Julionai

- RL: non differentiable rules and exploration
- Adversarial Training: Incorporating prior knowledge specified by a dataset of example molecules

olutional

• "GCPN is designed as a RL agent that operates within a chemistry aware graph generation environment."

Method: Notations

- G: (A, E, F)
- Adjacency Matrix: $A \in \{0,1\}^n$
- Node Feature Matrix $F :\in R^{n \times D}$
- Edge Conditioned Adjacency Tensor $E \in \{0,1\}^{b imes n imes n}$
- $A = \sum_{i=1}^{b} E_i$
- Goal to generate graphs that maximize a given property function $S(G) \in R$

$$max_{G'}E(S(G')) \tag{1}$$

Olution

- Prior Knowledge:
 - constraints
 - training data distribution

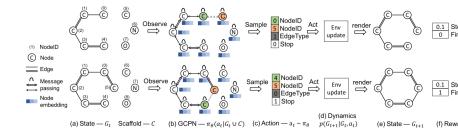
Method: (a) Graph Generation as Markov Decision Process

- MDP = (S,A,p,R,γ)
- *S* = {*s_i*} : e set of states that consists of all possible intermediate and final graphs
- $A = \{a_i\}$: set of actions or the modification made to current graph at each t
- P(transition dynamics): $p(s_{t+1}|s_t, \dots, s_0, a_t)$
- R(s_t): reward at s_t
- $p(s_{t+1}|s_t,...,s_0) = \sum_{a_t} p(s_{t+1}|s_t,...,s_0,a_t) p(a_t|s_t,...,s_0)$

Olutional

• policy $\pi_{\theta} = p(a_t | s_t, \dots, s_0)$

Method: Overview



- State Space: s_t intermediate generated graph G_t at time step t
- Scaffold Subgraphs{C₀,..., C_S}: (Example: C consists of all b different single node graphs/atom types)
- Action Space: connecting a new subgraph C_i to a node in G_t or connecting existing nodes within graph G_t

olutional

- State Transition Dynamics: Domain-specific rules
- Infeasible actions proposed by the policy network are rejected and the state remains unchanged.
- Example : Valency Check
- the environment updates the (partial) molecule according to the actions

olutional

Reward Design

- Two types of Rewards:
 - Intermediate
 - Final Rewards

Reward Design

- Two types of Rewards:
 - Intermediate
 - Final Rewards
- Final rewards: domain-specific rewards + adversarial rewards
- domain-specific rewards: (combination of) final property scores, : octanol-water partition coefficient (logP), druglikeness (QED) and molecular weight (MW),penalization of unrealistic molecules

iutional

Reward Design

- Two types of Rewards:
 - Intermediate
 - Final Rewards
- Final rewards: domain-specific rewards + adversarial rewards
- domain-specific rewards: (combination of) final property scores, : octanol-water partition coefficient (logP), druglikeness (QED) and molecular weight (MW),penalization of unrealistic molecules
- Intermediate: Adversarial + step wise validity
- A small positive reward is assigned if the action does not violate valency rules, otherwise a small negative reward is assigned.
- When the environment updates according to a terminating action, both a step reward and a final reward are given, and the generation process terminates.

IVOIULIOIIdi

$$\min_{\theta} \max_{\phi} V(\pi_{\theta}, D_{\phi}) = \mathbb{E}_{x \sim p_{data}}[\log D_{\phi}(x)] + \mathbb{E}_{x \sim \pi_{\theta}}[\log D_{\phi}(1-x)]$$

- x represents an input graph,
- *p*_{data} is the underlying data distribution defined either over final graphs (for final rewards) or intermediate graphs (for intermediate rewards).
- Only D can be trained with stochastic gradient descent, as x is a graph object that is non-differentiable with respect to parameters ϕ .
- use $-V(\pi_{\theta}, D_{\phi})$ as an additional reward together with other rewards, and optimize the total rewards with policy gradient methods

Node Embeddings: perform message passing over each edge type for a total of L layers

$$H^{(l+1)} = \mathrm{AGG}(\mathrm{ReLU}(\{\tilde{D}_i^{-\frac{1}{2}}\tilde{E}_i\tilde{D}_i^{-\frac{1}{2}}H^{(l)}W_i^{(l)}\}, \forall i \in (1,...,b)))$$

٦Id

olutional

Action Prediction

 $a_t = \text{CONCAT}(a_{\text{first}}, a_{\text{second}}, a_{\text{edge}}, a_{\text{stop}})$

$$\begin{split} f_{\text{first}}(s_t) &= \text{SOFTMAX}(m_f(X)), & a_{\text{first}} \sim f_{\text{first}}(s_t) \in \{0, 1\}^n \\ f_{\text{second}}(s_t) &= \text{SOFTMAX}(m_s(X_{a_{\text{first}}}, X)), & a_{\text{second}} \sim f_{\text{second}}(s_t) \in \{0, 1\}^{n+1} \\ f_{\text{edge}}(s_t) &= \text{SOFTMAX}(m_e(X_{a_{\text{first}}}, X_{a_{\text{second}}})), & a_{\text{edge}} \sim f_{\text{edge}}(s_t) \in \{0, 1\}^b \\ f_{\text{stop}}(s_t) &= \text{SOFTMAX}(m_t(\text{AGG}(X))), & a_{\text{stop}} \sim f_{\text{stop}}(s_t) \in \{0, 1\}^b \end{split}$$

Proximal Policy Optimization

$$\max L^{\text{CLIP}}(\theta) = \mathbb{E}_t[\min(r_t(\theta)\hat{A}_t, \operatorname{clip}(r_t(\theta), 1-\epsilon, 1+\epsilon)\hat{A}_t)], r_t(\theta) = \frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_{old}}(a_t|s_t)}$$

• pretraining the policy net: any ground truth objective

•
$$L^{EXPERT}(\theta) = -\log(\pi_{\theta}(a_t|s_t))$$

• randomly sample a molecular graph G, and randomly select one connected subgraph G_0 of G as the state s_t .

U

ivolutional

- Property Optimization : molecules with high property score
- Property Targeting : molecules with a pre-specified range of target property score
- Constrained Property Optimization : molecules containing a specific substructure while having high property score

Julional

- Dataset: Zinc250k
- 9 atom types and 3 edge types
- Baselines:
 - State of the art Junction Tree VAE
 - ORGAN: RL based from text sequence representation

Results: Property optimization.

- Goal: highest possible penalized logP and QED scores.
- Penalized logP : logP score that also accounts for ring size and synthetic accessibility
- QED : indicator of drug-likeness.

Method	Penalized logP				QED			
Method	1st	2nd	3rd	Validity	1st	2nd	3rd	Validity
ZINC	4.52	4.30	4.23	100.0%	0.948	0.948	0.948	100.0%
Hill Climbing	-	-	-	-	0.838	0.814	0.814	100.0%
ORGAN JT-VAE	$3.63 \\ 5.30$	$3.49 \\ 4.93$	$\begin{array}{c} 3.44 \\ 4.49 \end{array}$	$0.4\%\ 100.0\%$	$0.896 \\ 0.925$	$\begin{array}{c} 0.824 \\ 0.911 \end{array}$	$0.820 \\ 0.910$	2.2% 100.0%
GCPN	7.98	7.85	7.80	100.0%	0.948	0.947	0.946	100.0%

J

volutional

Table 1: Comparison of the top 3 property scores of generated molecules found by each model.

Results: Property Targeting

- range of Mol Weight and QED
- The RL reward for this task is the L1 distance between the property score of a generated molecule and the range center.

Method	$-2.5 \le \log \mathrm{P} \le -2$		$5 \le \log \! \mathrm{P} \le 5.5$		$150 \leq \mathrm{MW} \leq 200$		$500 \le MW \le 550$	
	Success	Diversity	Success	Diversity	Success	Diversity	Success	Diversity
ZINC	0.3%	0.919	1.3%	0.909	1.7%	0.938	0	_
JT-VAE ORGAN GCPN	11.3% 0 85.5%	0.846 0.392	7.6% 0.2% 54.7%	0.907 0.909 0.855	0.7% 15.1% 76.1%	0.824 0.759 0.921	16.0% 0.1% 74.1 %	0.898 0.907 0.920

Table 2: Comparison of the effectiveness of property targeting task.

Results: Constrained Property Optimization

- Optimize the penalized logP while constraining the generated molecules to contain one of the 800 ZINC molecules with low penalized logP, following the evaluation in JT-VAE.
- Since JT-VAE cannot constrain the generated molecule to have certain structure, : the constraint is relaxed such that the molecule similarity $sim(G, G_0)$ between the original and modified molecules is above a threshold δ .

δ		JT-VAE		GCPN			
0 -	Improvement	Similarity	Success	Improvement	Similarity	Success	
0.0	1.91 ± 2.04	0.28 ± 0.15	97.5%	4.20 ± 1.28	0.32 ± 0.12	100.0%	
0.2	1.68 ± 1.85	0.33 ± 0.13	97.1%	$\bf 4.12 \pm 1.19$	0.34 ± 0.11	100.0%	
0.4	0.84 ± 1.45	0.51 ± 0.10	83.6%	2.49 ± 1.30	0.47 ± 0.08	100.0%	
0.6	0.21 ± 0.71	0.69 ± 0.06	46.4%	0.79 ± 0.63	0.68 ± 0.08	$\mathbf{100.0\%}$	

Table 3: Comparison of the performance in the constrained optimization task.