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@ Generating novel graph structures that optimize given
objectives while obeying some given underlying rules

@ Challenge: optimize desired properties while incorporating
highly complex and non-differentiable rules



Overview

e Graph Convolutional Policy Network (GCPN): generate
molecules where the generation process can be guided towards
specified desired objectives,

@ Restrict the output space based on underlying chemical rules

@ graph representation, reinforcement learning and adversarial
training in a single unified framework.



Overview

@ RL: non differentiable rules and exploration
@ Adversarial Training: Incorporating prior knowledge specified
by a dataset of example molecules

@ "GCPN is designed as a RL agent that operates within a
chemistry aware graph generation environment.”



Method: Notations

G:(AE,F)

Adjacency Matrix: A € {0,1}"

Node Feature Matrix F :c R™P

Edge Conditioned Adjacency Tensor E € {0,1}2*mxn
A=7%P |E

Goal to generate graphs that maximize a given property
function S(G) € R

maxg E(S(G')) (1)

Prior Knowledge:

e constraints
e training data distribution

G TapIT Convorationa



Method: (a) Graph Generation as Markov Decision Process

MDP =(S,A,p,R,¥)

S = {si} : e set of states that consists of all possible
intermediate and final graphs

A ={a;} : set of actions or the modification made to current
graph at each ¢t

e P(transition dynamics): p(sty1|st, .-, S0, at)

@ R(s:): reward at s;

® p(stt+1|Sty---,5) = Lap(St+1lst,- -, %0, a:)p(at|st, .., %)
e policy mp = p(at|st,. .., %)
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Method: (b) Molecule Generation Environment

@ State Space: s; intermediate generated graph G; at time step
t

e Scaffold Subgraphs{Cy, ..., Cs}: (Example: C consists of all
b different single node graphs/atom types)

@ Action Space: connecting a new subgraph C; to a node in G;
or connecting existing nodes within graph G;



Method: (b) Molecule Generation Environment (contd)

@ State Transition Dynamics: Domain-specific rules

@ Infeasible actions proposed by the policy network are rejected
and the state remains unchanged.

@ Example : Valency Check

@ the environment updates the (partial) molecule according to
the actions



Reward Design

@ Two types of Rewards:

o Intermediate
e Final Rewards



Reward Design

@ Two types of Rewards:
o Intermediate
e Final Rewards
@ Final rewards: domain-specific rewards + adversarial rewards
@ domain-specific rewards: (combination of) final property
scores, : octanol-water partition coefficient (logP),
druglikeness (QED) and molecular weight (MW),penalization
of unrealistic molecules



Reward Design

@ Two types of Rewards:
o Intermediate
e Final Rewards
@ Final rewards: domain-specific rewards + adversarial rewards
@ domain-specific rewards: (combination of) final property
scores, : octanol-water partition coefficient (logP),
druglikeness (QED) and molecular weight (MW),penalization
of unrealistic molecules
@ Intermediate: Adversarial + step wise validity
@ A small positive reward is assigned if the action does not
violate valency rules, otherwise a small negative reward is
assigned.
@ When the environment updates according to a terminating
action, both a step reward and a final reward are given, and
the generation process terminates.
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Adversarial Rewards

minmaxV (9, Dg) = Banpo, 10§ Do (2)] + Eanry log Dy (1 — )]

@ X represents an input graph,

@ pyata is the underlying data distribution defined either over
final graphs (for final rewards) or intermediate graphs (for
intermediate rewards).

@ Only D can be trained with stochastic gradient descent, as x
is a graph object that is non-differentiable with respect to
parameters ¢.

e use —V/(my, Dy) as an additional reward together with other
rewards, and optimize the total rewards with policy gradient
methods
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Graph Conv Policy Network

Node Embeddings: perform message passing over each edge type
for a total of L layers

H™Y = acG(ReLU({D; 2 E,D; * HOWD},vi € (1, ..., b))

o D; =Y Ej
° E,':E,'-i-/



Graph Conv Policy Network

Action Prediction

at = CONCAT(aﬁrst, Gsecond ) Bedge astop)

farst(5¢) = SOFTMAX(m (X)),

fsecond(st) = SOFTMAX(ms (Xaﬁrst7X))’
fedge(8t) = SOFTMAX (Mee(Xagaes Xasecona))s
fstop(5t) = SOFTMAX(m4(AGG(X))),

asirst ~ farst(st) € {0, 1}"
Gsecond ~ fsecond (s¢) € {0, 1}
Gedge ~ fedge(st) € {0,1}°
astop ~ fstop(s:) € {0,1}



Policy Gradient Training

Proximal Policy Optimization

mo(at|st)

max LCLIP(O) =E, [min(rt(e)/it,clip(rt 0),1—¢1+ e)At)], ri(6) = m
old

@ pretraining the policy net: any ground truth objective
o LEXPERT(9) = —log(mg(at|s:))

@ randomly sample a molecular graph G, and randomly select
one connected subgraph Gy of G as the state s;.



@ Property Optimization : molecules with high property score

@ Property Targeting : molecules with a pre-specified range of
target property score

@ Constrained Property Optimization : molecules containing a
specific substructure while having high property score



Experimental Setup

@ Dataset: Zinc250k

@ 9 atom types and 3 edge types
@ Baselines:

o State of the art Junction Tree VAE
o ORGAN: RL based from text sequence representation
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Results:Property optimization.

@ Goal: highest possible penalized logP and QED scores.

@ Penalized logP : logP score that also accounts for ring size
and synthetic accessibility

@ QED : indicator of drug-likeness.

Table 1: Comparison of the top 3 property scores of generated molecules found by each model.

Penalized logP QED

Method

Ist 2nd 3rd Validity 1st 2nd 3rd  Validity
ZINC 452 430 4.23 100.0% 0.948 0.948 0.948 100.0%
Hill Climbing  — - - - 0.838 0.814 0.814 100.0%
ORGAN 3.63 349 344 04% 0896 0.824 0.820 2.2%
JT-VAE 530 4.93 4.49 100.0% 0.925 0.911 0.910 100.0%
GCPN 798 7.85 7.80 100.0% 0.948 0947 0.946 100.0%
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Results: Property Targeting

@ range of Mol Weight and QED

@ The RL reward for this task is the L1 distance between the
property score of a generated molecule and the range center.

Table 2: Comparison of the effectiveness of property targeting task.

—2.5 <logP < —2 5 <logP <55 150 <MW <200 500 < MW < 550
Method

Success Diversity Success Diversity Success Diversity Success Diversity

ZINC 0.3% 0.919 1.3% 0.909 1.7% 0.938 0
JT-VAE 11.3% 0.846 7.6% 0.907 0.7% 0.824 16.0% 0.898
ORGAN 0 - 0.2% 0.909 15.1% 0.759 0.1% 0.907

GCPN 85.5% 0.392 54.7% 0.855 76.1% 0.921 74.1% 0.920
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Results: Constrained Property Optimization

o Optimize the penalized logP while constraining the generated
molecules to contain one of the 800 ZINC molecules with low
penalized logP, following the evaluation in JT-VAE.

@ Since JT-VAE cannot constrain the generated molecule to
have certain structure, : the constraint is relaxed such that
the molecule similarity sim(G, Gp) between the original and
modified molecules is above a threshold 4.

Table 3: Comparison of the performance in the constrained optimization task.
JT-VAE GCPN

)

Improvement  Similarity =~ Success Improvement  Similarity Success

00 1.91+204 028+0.15 97.5% 4.20+1.28 0.32+0.12 100.0%
02 1.68+1.85 0.33+0.13 97.1% 4.12+1.19 0.34+0.11 100.0%
04 084+145 051+0.10 83.6% 249+1.30 047+0.08 100.0%
06 021+0.71 0.69+0.06 46.4% 0.79+0.63 0.68+0.08 100.0%
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