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Introduction

@ ResNets improve depth and accuracy

@ ResNets learn to predict residual outputs not absolute
mappings

@ a type of deep supervision as near-identity layers effectively
reduce distance to the loss.
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Fractal Nets

@ subnetworks of many depths
@ does not rely on residuals

@ following characteristics not hard wired: modular,
student-teacher learning, deep supervision

@ DropPath: regularization techniques
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Method: Fractal Nets
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Method: Fractal Networks

@ networks structure, connections and layer types, is defined by
fc ().

@ successive fractals= fc11(z) = [fc © fc(2)] + [conv(z)]

@ © denotes composition and + denotes join/concat operation;
C number of columns

@ Depth: scales as 2¢~1
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Regularization via Drop-path

Related: change interactions to discourage co-adaptation
e dropout

@ drop-connect
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drop path

@ prevent co-adaptation of parallel paths

@ randomly drop operands of join
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@ local: randomly remove inputs from join

@ global: select single path for entire net, to allow for individual
columns to act as good predictors
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local and global drop-path
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@ A global sampling strategy returns a single column as a
subnetwork.

@ Alternating it with local sampling encourages the development
of individual columns as performant stand-alone subnetworks.
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Drop-path

@ sample a new subnetwork each mini-batch.

e With sufficient memory, we can simultaneously evaluate one
local sample and all global samples for each mini-batch by
keeping separate networks and tying them together via weight
sharing.

@ global drop-path forces the use of many paths whose lengths
differ by orders of magnitude (powers of 2).

@ The subnetworks by drop-path exhibit large structural
diversity.
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Implementation and Results

Method C100 C100+ C100++ C10 C10+ C10++ SVHN
Network in Network (Lin et al., 2013) 35.68 - - 10.41 + 8.81 - 2.35
Generalized Pooling (Lee et al., 2016) 32.37 : - - 7.62 : 6.05 - 1.69
Recurrent CNN (Liang & Hu, 2015) 31.75 - - 8.69 |, 7.09 - 1.77
Multi-scale (Liao & Carneiro, 2015) 27.56 1 - - 6.87 1 - - 1.76
FitNet Romero et al. (2015) - 3504 - - 1839 - 2.42
Deeply Supervised (Lee et al., 2014) - : 34.57 - 9.69 : 7.97 - 1.92
AlI-CNN (Springenberg et al., 2014) -, 3371 - 9.08 | 7.25 4.41 -
Highway Net (Srivastava et al., 2015) - 3239 - - 172 - -
ELU (Clevert et al., 2016) - 12428 - - 1655 - -
Scalable BO (Snoek et al., 2015) - } - 27.04 - - 6.37 1.77
Fractional Max-Pool (Graham, 2014) - - 26.32 - - 3.47 -
FitResNet (Mishkin & Matas, 2016) - ) 2766 - - ) 584 - -
ResNet (He et al., 2016a) - - - - 6.61 - -
ResNet by (Huang et al., 2016b) 4476 1+ 27.22 - 13.63 1 6.41 - 2.01
Stochastic Depth (Huang et al., 2016b) | 37.80 ' 24.58 - 11.66 ' 5.23 - 1.75
Identity Mapping (He et al., 2016b) - 2268 - - 469 - -
ResNet in ResNet (Targ et al., 2016) - 2290 - -, 501 - -
‘Wide (Zagoruyko & Komodakis, 2016) -1 20.50 - -1 417 - -
DenseNet-BC (Huang et al., 2016a)" 19.64 1 17.60 - 5.19 : 3.62 - 1.74
FractalNet (20 layers, 38.6M params) 35.34 ' 23.30 22.85 | 10.18 ' 5.22 5.11 2.01
+ drop-path + dropout 2820 | 23.73 2336 | 733 | 4.60 4.59 1.87
L> deepest column alone 29.05 | 2432 23.60 | 727 | 4.68 4.63 1.89
FractalNet (40 layers, 22.9M params) - 12249 21.49 -1 524 5.21 -




Implementation and Results
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Evolution of loss for plain networks

with mixed drop-path, monitoring its loss as well as the losses of its four subnetworks corresponding to
individual columns of the same depth as the plain networks.

As the 20-layer subnetwork starts to stabilize, drop-path puts pressure on the 40-layer column to adapt,
with the rest of the network as its teacher.



