Learning Deep Generative Models of

Graphs

(ICML 2018

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, Peter
Battaglia
DeepMind UK
https://qdata.github.io/deep2Read
Presenter: Arshdeep Sekhon

Fall 2018

- LcdITlnE TP acClICh


https://qdata.github.io/deep2Read

@ knowledge graphs

@ social interaction nets

@ physical world

@ molecules
capturing the distribution of a particular family of graphs is
important

@ drug discovery: dsicover new structures after smpling from
decoder model

@ priors for bayesian structure learning

@ semantic graph representations for natural language sentences

- LcdITlng TP acClICh



Old approaches
@ based on random graph models: independece assumptions

@ grammar based

- LcdITlng TP acClICh



@ this generative model makes no structural assumptions
(independence)

@ avoids the brittleness of grammar-based techniques.

- LcdITlng TP acClICh



Overview

@ add new structure to existing graph

@ probability of addition event depends on history of graph
derivation

@ represent graph using GNN

- LcdITlng TP acClICh



@ Sequential Generation process
@ generate one node at a time

@ connect node to current partial graph by creating edges one
by one

- LcdITlng TP acClICh



In Each lteration:

sample whether to add a new node of a particular type or terminate

if a node type is chosen, we add that type node

check if any further edges are needed to connect the new node to the existing graph

if yes, select a node in the graph and add an edge connecting the new node to the selected node.
The algorithm goes back to step (3)

repeat until the model decides not to add another edge.

0000000

go back to step (1) to add subsequent nodes.

Add node (0)? Add edge? Add node (1) Add edge? Pick node (0) to
(yes/no) (yes/no) (yes/no) (yes/no) add edge (0.1)
| @ ® ® ® ® o
0 0] 19J
Generation steps
Add edge? Add node (27 Add edge? Pick node (0) to Add edge?
g /) ¥ /1
@ (yes/no) {yes/no) no) ge ©0:2) @ [¢ no)
® O ® ® —>
3 ® @ ®

- LcdITlng TP acClICh



Graph generation process

sequence of structure building actions:

@ (1) add a new node or not (with probabilities provided by an
faddnode module),

@ (2) add a new edge or not (probabilities provided by figdedge).
and

@ (3) pick one node to connect to the new node (probabilities
provided by fpodes)-

- LcdITlng TP acClICh



Learning Graph Generative Models

@ Can use a number of different generative models to model it

@ treat the sequences as sentences in natural language: use
LSTM

@ This paper: use graph nets to model this sequential decision
process instead

° faddnodey f;ddedge and fnodes are GNNs

- LcdITlng TP acClICh



Learning the Generative Model

Propagation Process prop(hy, G):
e h, € RM with each node v € V
© ay = Xy (uv)eefe(hu, hy, Xu,v)
e h, =fy(ay,h,)VveV

Graph Representationhg = R(hy, G):
° he =T,cvhy
° hg =YL,cvgl ©hS

- LcdITlng TP acClICh



Probabilities of Structure Building Decisions

h{" = prop™ (hy, G)

he = R(h\",G)

faddnode(G) = softmax(fan (hg))
Jaddedge(G,v) = 0(fac(hg, b))
sy = fs(b{1) h(D), vueV
frodes(G,v) = softmax(s)

- LcdITlng TP acClICh



a) faddnode(G)

o take an existing graph G and hy as input

@ make the decision whether to terminate the algorithm or add
another node

@ first run T rounds of propagation to update node vectors,

@ compute a graph representation vector and predict an output
from there through a standard MLP followed by softmax or
logistic sigmoid.

o After the predictions are made, the new node vectors h|, are
carried over to the next step

@ the same carry-over is applied after each and any decision
step.

@ This makes the node vectors recurrent, across both the
propagation steps and the different decision steps

- LcdITlng TP acClICh



b) f..addedge(G; V) and C) fnodes(G; V)

@ to get the probability of adding an edge to the newly created
node v through a different MLP f,., after getting the graph
representation vector hg

@ fpodes(G, v): after T rounds of propagation, we compute a
score for each node, (Eq. 9)

@ which is then passed through a softmax to be properly
normalized (Eq. 10) into a distribution over nodes.

@ f; maps pairs h, and h, to a score s, for connecting u to the
new node v

- LcdITlng TP acClICh



Initializing Node States

o hy = finit(Rinit(hv, G), xv)

the model can also be made conditional, by adding conditioning
information in one of the mlps

- LcdITlng TP acClICh



Training and Evaluation

@ graph generative model defines a joint distribution p(G, )
over graphs G and node and edge ordering 7

o interested in the marginal: p(G) = L cp(6)p(G, )

p(G) =Y p(G,7) = Ey(ri) [%] :

@ g(m|G) is any proposal distribution over permutations

@ get estimate by generating a few samples from q(7|G) and
p(G, )
q(r[G)

then average




Ttraining and Evaluation

e direct optimization of log(P(G)) is intractable

@ learn p(G, ) by maximizing the expected joint likelihood

Epua(a,mlog (G, )] = By, (@) Epua (1) log (G, 7).

in the experiments: this paper always use a fixed ordering or
uniform random ordering for training

- LcdITlng TP acClICh



Experiments : Synthetic

(1) cycles, (2) trees, and (3) graphs generated by the
BarabasiAlbert model

@ generate data on the fly during training
@ all cycles and trees have between 10 to 20 nodes

@ the BarabasiAlbert model is set to generate graphs of 15
nodes

@ each node is connected to 2 existing nodes when added to the
graph.
@ baselines: Erdos Renyi and LSTM baseline

- LcdITlng TP acClICh



Results: Synthetic

Cycles Trees Barabasi-Albert Graphs
T

—— Graph Model
— LSTM

—— Graph Model —— Graph Model
— LSTM

— LSTM

Negative L

Negative Log-Likelihood
Negative Log-Likelihood

©'0:00 0.25 050 0.75 100 1.25 150 175 zun
bt

000 025 050 075 100 135 150 175 200
raining Iterations

a8t
000 0.25 050 0.75 1,00 1.25 150 1.75 zuu
Training Iterations

Training Iterations

Table 1. Percentage of valid samples for three models on cycles
and trees datasets, and the KL-divergence between the degree
distributions of samples and data for Barabasi—Albert graphs.
Dataset | Graph Model LSTM E-R Model
Cycles 84.4% 48.5% 0.0%
Trees 96.6% 30.2% 0.3%
B-A Graphs 0.0013 0.0537 0.3715

- LcdITlng TP acClICh



Molecule Generation

@ ChemBL Database: A manually curated database of bioactive
molecules with drug-like properties. It brings together
chemical, bioactivity and genomic data to aid the translation
of genomic information into effective new drugs.

@ restricted the dataset to molecules with at most 20 heavy
atoms, and used a training / validation / test split of 130,830
/ 26,166 / 104,664 examples each

Table 2. Molecule generation results. N is the number of permu-
tations for each molecule the model is trained on. Typically the
number of different SMILES strings for each molecule < 100.

Arch Grammar Ordering | N NLL Tovalid Jonovel
LSTM SMILES Fixed 1 21.48 93.59 81.27
LSTM SMILES Random < 100 19.99 93.48 83.95
LSTM _ Graph Fixed T 206 8516  80.14
LSTM  Graph  Random | O(n!) 6325 9144 9126
Graph Graph Fixed 1 20.55 97.52 90.01

Graph Graph Random | O(n!) 5836 9598 95.54
Table 3. Negative log-likelihood evaluation on small molecules
wn.h no more than 6 nodes.

Grammar _ Ordering | N Fixed _ Best _ Marginal
LSTM  SMILES _ Fixed T 728 1598 1590
LSTM _ SMILES _ Random | <100 1595 1576 1567
LSTM __ Graph Fixed T 1679 1635 1626
LSTM  Graph  Random | O(n!) 2057 1890 1596
Graph  Graph Fixed 1 1619 1575 1564

Graph Graph Random O(n!) 20.18 18.56 15.32

- LcdITlng TP acClICh




Conditional generation results

a subset of the ChEMBL training set used in the previous section
that contains molecules of 0, 1 and 3 aromatic rings.

Table 4. Conditional generation results.
Arch  Grammar Condition Valid Novel Atom Bond Ring All

LSTM SMILES Training 843 828 713 709 827 69.8
LSTM  Graph  Training 656 649 633 627 503 482
Graph  Graph  Training 931 921 817 79.6 764 663
LSTM SMILES  2rings 644 612 7.1 42 438 05
LSTM  Graph  2rings 549 542 235 217 239 98
Graph  Graph  2rings 915 913 758 724 621 502
LSTM SMILES  4rings 717 694 465 37 13 00
LSTM  Graph  4rings 429 421 164 101 34 18
Graph  Graph  4rings 848 840 487 409 17.0 133

- LcdITlng TP acClICh



SIS

@ Ordering

@ Long Sequences : The generation process used by the graph
model is typically a long sequence of decisions

@ scalability: T

e found that training such graph models is more difficult than
training typical LSTM models. The sequences these models
are trained on are typically long, and the model structure is
constantly changing, which leads to unstable training.

- LcdITlng TP acClICh



