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Motivation

Generate graphs representing distribution in training data

Generate graphs that obey hard constraints specific to the task

generating and optimizing chemical molecules : important
real-world application
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Summary

Constrained Graph Variational Autoencoder: Graph as input
and Graph as output

encoder-decoder are Gated Graph Neural Nets in a variational
autoencoder (VAE)

incorporate hard domain-specific constraints
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Related Work

Key Challenge: sampling directly from a joint distribution over all
configurations of labeled nodes and edges is intractable for
reasonably sized graphs. Related Work:

Uncorrelated generation

Sequential generation
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Related Work

Key Challenge: sampling directly from a joint distribution over all
configurations of labeled nodes and edges is intractable for
reasonably sized graphs. Related Work:

Uncorrelated generation

Sequential generation :

lose permutation symmetry
challenging to marginalize out the construction trace when
computing the log-likelihood of a graph in the VAE objective.
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Related Work: Uncorrelated generation

The Erdos-Rnyi G(n, p) random graph model

each edge exists with independent probability p.

GraphVAEs : where the decoder emits independent
probabilities governing edge and node existence and labels.
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Related Work: Sequential generation

generating a graph from an auxiliary stream of information
that imposes an order on construction steps.

an autoregressive model for graphs without the auxiliary
stream.

good results, but each decision is conditioned on a full history
of the generation sequence
stability and scalability problems
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Method
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Method: Generative Model/Decoder

process is seeded with N1 vectors zv

form a latent specification for the graph to be generated

generation of edges between nodes:

focus : zoom into one node
focus: deterministic queue using breadth first search
expand: chooses edges to add from the focus node.

1N is an upper bound on the number of nodes in the final graph
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Method: expand function

ideally, make expand condition upon the full history of the
generation.

learned model is likely to learn to reproduce generation traces

underlying data usually only contains fully formed graphs:
trace is an artifact

this would lead to extremely deep computation graphs, as
even small graphs easily have many dozens of edges;

makes training of the resulting models very hard
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Method: expand function

Solution: condition expand only upon the partial graph
structure G t generated so far

intuitively, learning how to complete a partial graph without
using any information about how the partial graph was
generated.
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Method: Node Initalization

state h
(t=0)
v with each node v

zv is drawn from the d-dimensional standard normal N(0, I )

h
(t=0)
v is the concatenation [zv , τv ]

τv is an interpretable one-hot vector : the node type.

τv is derived from zv by sampling from the softmax output of
a learned mapping τv : f (zv ) 2

The interpretable component of h
(t=0)
v : τv gives us a means

to enforce hard constraints during generation.

node-level variables,to global representations H(t) and Hinit ,

also initialize a special stop node to a learned representation
hφ for algorithm termination

2f is an NN
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Method: Node Update

Whenever we obtain a new graph G (t+1), discard h
(t)
v and

compute new representations h
(t+1)
v for all nodes taking their

(possibly changed) neighborhood into account.

This is implemented using a standard gated graph neural
network (GGNN) Gdec for S steps

the sum runs over all edges in the current graph and E is an
edge-type specific neural network

since h
(t+1)
v is computed from h

(0)
v rather than h

(t)
v , the

representation h
(t+1)
v is independent of the generation history

of G (t+1)
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Method: Edge Selection and Labeling

first pick a focus node v from our queue

function expand then selects edges v
l←→ u from v to u with

label l as follows.
For each non-focus node u, we construct a feature vector
where dv ,u is the graph distance between v and u.
We use these representations to produce a distribution over
candidate edges:

p(v
l←→ u|φ(t)v ,u) = p(l |φ(t)v ,u, v

l←→ u) · p(
l←→ u)|φ(t)v ,u). (1)

The factors are calculated as softmax outputs from neural
networks C (determining the target node for an edge) and L‘
(determining the type of the edge):
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Masking

M(t)v
u←→ and m(t)v

l←→ u are binary masks that forbid edges
that violate constraints.

New edges are sampled from these distributions

any nodes that are connected to the graph for the first time
are added to the focus queue.

only consider undirected edges in this paper, extension to
directed graphs

Constrained Graph Variational Autoencoders for Molecule Design(NIPS 2018)



Method: Generative: Termination

keep adding edges to a node v using expand and Gdec until an
edge to the stop node is selected.

Node v then loses focus and becomes closed (mask M ensures
that no further edges will ever be made to v).

The next focus node is selected from the focus queue.

a single connected component is grown in a breadth-first
manner.

Edge generation continues until the queue is empty
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Method: training the generative model: Encoder

The encoder of our VAE is a GGNN Genc that embeds each
node in an input graph G to a diagonal normal distribution in
d-dimensional latent space parametrized by mean µv and
standard deviation σv vectors.

The latent vectors zv are sampled from these distributions

VAE regularizer term measuring the KL divergence between
the encoder distribution and the standard Gaussian prior:

Llatent = Σv∈GKL(N(µ, diag2
σv )||N(0, I )) (2)
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Training the Decoder

decoder: generative procedure described previously

condition generation on a latent sample from the encoder
distribution during training
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Node Initialization

first sample a node specification zv for each node v

independently for each node generate the label τv using the
learned function f.

The probability of re-generating the labels τ∗v observed in the
encoded graph is given by a sum over node permutations

This inequality provides a lower bound given by the single
contribution from the ordering used in the encoder
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Edge Selection and Labelling

During training, provide supervision on the sequence of edge
additions based on breadth-first traversals of each graph in
the dataset D.

to learn a distribution over graphs (and not graph generation
traces), we would need to train with an objective that
computes the log-likelihood of each graph by marginalizing
over all possible breadth-first traces.

computationally intractable: only compute a Monte-Carlo
estimate of the marginal on a small set of sampled traces.

expand model is not conditioned on full traces, and instead
only considers the partial graph generated so far.
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Edge Selection and Labeling

Jensens inequality to show that the log-likelihood of a graph
G is loosely lower bounded by the expected log-likelihood of
all the traces

∏
that generate it.

decompose each full generation trace π ∈
∏

into a sequence
of steps of the form (t, v , ε), where v is the current focus node
and ε = vluis the edge added at step t:
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Edge Selection and Labeling

first term corresponds to the choice of v as focus node at step
t of trace π.

focus function is fixed: this choice is uniform in the first focus
node and then deterministically follows a breadth-first queuing
system.

A summation over this term thus evaluates to the constant
log(1/N).
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Edge Selection and Labeling

the second term only conditioned on the current graph (and
not the whole generation history G (0)...G (t1)).

consider the set of generation states S of all valid state pairs
s = (G (t), v) of a partial graph G (t) and a focus node v.

We use |s| to denote the multiplicity of state s in
∏

, i.e., the
number of traces that contain graph G (t) and focus on node v.

Let Es denote all edges that could be generated at state s
(the edges from the focus node v that are present in the graph
G from the dataset, but are not yet present in G (t).)

Constrained Graph Variational Autoencoders for Molecule Design(NIPS 2018)



Edge Selection and Labeling

Then, each of these appears uniformly as the next edge to
generate in a trace for all |s| occurrences of s in a trace from∏
rearrange a sum over paths into a sum over steps

|s|/|
∏
|: the probability of observing state s in a random

draw from all states in
∏

Lrecon =
∑

G∈D log [p(G |G (0)) · p(G (0)|z)]
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Optimizing Graph Properties

perform (local) optimization of these graphs with respect to
some numerical property, Q.

gradient ascent in the continuous latent space using a
differentiable gated regression model
R(zv) = Σvσ(g1(zv ))g2(zv ), where g1 and g2 are neural
networks

During training, L2 distance loss LQ between R(zv ) and the
labeled properties Q.

at test time, we can sample an initial latent point zv and then
use gradient ascent to a locally optimal point z∗v subject to an
L2 penalty that keeps the z∗v within the standard normal prior
of the VAE.

Decoding from the point z∗v then produces graphs with an
optimized property Q.
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Objective

L = Lrecon. + λ1Llatent + λ2LQ , (3)
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Experiments

Datasets”

QM9: 134k samples with 9 atoms, , the molecules in this
dataset only reflect basic structural constraints.

ZINC: 250k drug compounds 23 atoms, molecules are bigger (
23 heavy atoms) and structurally more complex than the
molecules in QM9.

CEPDB: 250k organic molecules 28 heavy atoms, structurally
very complex, containing six to seven rings each

In the encoder, molecular graphs are presented with nodes
annotated with onehot vectors τ v indicating their atom type and
charge.
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Experiments: Datasets

edge types: single, double, triple covalent bonds

Encoder Inputs: node one hot vector that indicate atom type
and charge
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Experiemnts: Valency Masking

valency : the number of bonds that that atom can make in a
stable molecule

valency rules : some atoms can only make certain types of
bonds

valency of 2: 2 bonds

Mask: the number of bonds bv never exceeds the valency bv∗
of the node

if bonds less than the valency: add hydrogen atoms

this generates valid molecules: parse the graph to SMILES
string using RDKitParser

also handle avoidance of edge duplication and self loops
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Baselines

DeepGAR: DeepAutoregressive model

GrammarVAE

ChemVAE

GraphVAE

random graph models

train on the three datasets and then sample 20k molecules from
the trained models
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Metrics

Novelty: fraction of molecules not appearing in the training
data

syntactic validitty

uniqueness: ratio of sample set size before and after
deduplication of identical molecules

average atom type

average bond type

the average number of 3-, 4-, 5-, and 6-membered cycles in
each molecule.
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Results
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Results: Directed Molecule Generation

predict the Quantitative Estimate of Drug-Likeness (QED)
directly from latent space

generate molecules with very high QED values by performing
gradient ascent in the latent space using the trained
QED-scoring network.
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