
Generating and designing DNA with deep generative
models

Nathan Killoran, Leo J. Lee, Andrew Delong, David Duvenaud, Brendan J. Frey

arxiv 2017

Reviewed by : Jack Lanchantin

1Department of Computer Science, University of Virginia

1 / 32

Outline

1 Intro

2 Generative Design of DNA
GAN
Generative Optimization
Joint Method of GAN and Activation Maximization

3 Experiments
1. Generative DNA Model

1.1: Exploring the Latent Encoding
1.2: Capturing Exon Splice Site Signals

2. Designing DNA

4 Generative Modeling Architecthures

1 / 32

Generative Models

Generative models are good for many uses, including:

Simulating data

Exploring the space of possible data configurations

Tuning generated data to have specific properties

Inventing novel, unseen configurations

2 / 32

This Paper

Goal: create synthetic DNA sequences and tune these sequences to
have certain desired properties.

Methods:
1 GAN-based deep generative network for the creation of new DNA

sequences
2 Activation maximization method for designing sequences with desired

properties
3 Joint method of 1 & 2

3 / 32

Outline

1 Intro

2 Generative Design of DNA
GAN
Generative Optimization
Joint Method of GAN and Activation Maximization

3 Experiments
1. Generative DNA Model

1.1: Exploring the Latent Encoding
1.2: Capturing Exon Splice Site Signals

2. Designing DNA

4 Generative Modeling Architecthures

3 / 32

Outline

1 Intro

2 Generative Design of DNA
GAN
Generative Optimization
Joint Method of GAN and Activation Maximization

3 Experiments
1. Generative DNA Model

1.1: Exploring the Latent Encoding
1.2: Capturing Exon Splice Site Signals

2. Designing DNA

4 Generative Modeling Architecthures

3 / 32

GAN Generator

Generator G transforms continuous variable z into synthetic data,
G (z), where z is a high-level latent encoding for the data

Discriminator D produces a continuous valued number output D(x)
to score between real and generated output.

Discriminator’s training objective:

maxθDLdisc = maxθD [Ex∼Preal
D(x)− Ez∼PzD(G (z))] (1)

Generator’s training objective:

maxθGLgen = maxθG [Ez∼PzD(G (z))] (2)

4 / 32

GAN Generator for DNA

Wasserstein GAN (Arjovsky et al.): discriminator’s output is adapted to an
arbitrary score D(x) ∈ R, and an optimization penalty is introduced to
bound the discriminators gradients, making the model more stable and
easier to train

5 / 32

Outline

1 Intro

2 Generative Design of DNA
GAN
Generative Optimization
Joint Method of GAN and Activation Maximization

3 Experiments
1. Generative DNA Model

1.1: Exploring the Latent Encoding
1.2: Capturing Exon Splice Site Signals

2. Designing DNA

4 Generative Modeling Architecthures

5 / 32

Generative Optimization

Instead of generating realistic-looking data, the focus in this
alternative approach is to synthesize data which strongly manifests
certain desired properties

6 / 32

Activation Maximization for DNA

Let P be a function which predicts a target property t = P(x) (e.g, x
is a dog)

P can be generalized to some combination of explicit functions {fi}
and learned functions {fθj}:

P(x) =
∑
i

αi fi (x) +
∑
j

βj fθj (x) (3)

Activation Maximization: starting with an arbitrary x , change x to
maximize t by following the gradient w.r.t x:

x → x + ε∇x t (4)

Final sequence can be found by taking a softmax over the 4
characters at each position, and taking an argmax.

7 / 32

Outline

1 Intro

2 Generative Design of DNA
GAN
Generative Optimization
Joint Method of GAN and Activation Maximization

3 Experiments
1. Generative DNA Model

1.1: Exploring the Latent Encoding
1.2: Capturing Exon Splice Site Signals

2. Designing DNA

4 Generative Modeling Architecthures

7 / 32

Joint method

One drawback with activation maximization is that it ignores realism
of data in its pursuit of optimal attributes

E.g., such images are often exaggerated or nightmarish, with the
target property manifesting in unrealistic ways

8 / 32

Joint method: Plug & Play Generative Network

“plug & play generative networks” (Nguyen et. al.): combine
activation maximization with a generative model

Idea: Let a generator capture the generic high-level structure of data,
while using predictors to fine-tune specific properties

9 / 32

Joint method: Plug & Play Generative Network

This joint architecture requires two components:

Generator G transforms latent codes z into synthetic data x (e.g. a
trained GAN generator), and a predictor P, mapping data x to the
corresponding attributes t = P(x).

The two modules are plugged back-to-back, so that they form a
concatenated transformation z → x → t

10 / 32

Joint method: Plug & Play Generative Network

Goal is still the same as activation maximization: tune data to have
desired properties

To do this, we calculate the gradient of the prediction t with respect
to the generators latent codes z :

∇z t =
∑
i

∂t

∂xi

∂xi
∂z

=
∑
i

∂P(x)

∂xi

∂Gi (z)

∂z
(5)

11 / 32

Outline

1 Intro

2 Generative Design of DNA
GAN
Generative Optimization
Joint Method of GAN and Activation Maximization

3 Experiments
1. Generative DNA Model

1.1: Exploring the Latent Encoding
1.2: Capturing Exon Splice Site Signals

2. Designing DNA

4 Generative Modeling Architecthures

11 / 32

Outline

1 Intro

2 Generative Design of DNA
GAN
Generative Optimization
Joint Method of GAN and Activation Maximization

3 Experiments
1. Generative DNA Model

1.1: Exploring the Latent Encoding
1.2: Capturing Exon Splice Site Signals

2. Designing DNA

4 Generative Modeling Architecthures

11 / 32

Experiment 1: Generative DNA Model

Perform several experiments intended to more fully understand the
capabilities of the DNA generator architecture

12 / 32

Exploring the Latent Encoding

Trained a WGAN model on a dataset of 4.6M 50-nucleotide-long
sequences encompassing chr 1 of hg38

Consider interpolation between points in the latent space. Show how
the generated data varies as we traverse a straight line between two
arbitrary latent coordinates z1 and z2.

13 / 32

1.1: Exploring the Latent Encoding

Reflection in the latent space: z → −z
Fix a sequence x∗ (e.g. all “G”) and find, via gradient-based search,
64 different latent points zi which each generate x∗ , i.e., G (zi) = x∗

for all zi

Reflect each of these latent points and decode the corresponding
generated sequences

14 / 32

1.1 Verification of GAN: Distance to training sequences

15 / 32

1.2: Capturing Exon Splice Site Signals

Trained GAN on 116k 500-nt-long human genomic sequences, each
containing exactly one exon (varying between 50-400 nt).

Included an additional flag such that nucleotides within an exon = 1,
and non-exon positions = 0

Model must simultaneously learn to separate exons while also
capturing the statistical information of nucleotides relative to these
exon borders (splice sites)

16 / 32

1.2: Capturing Exon Splice Site Signals

Used the generated flag positions to align the corresponding
generated sequences (taking the first/last value above 0.5 as the
start/end of the exon)

Model has picked up on various splice site signals

17 / 32

Outline

1 Intro

2 Generative Design of DNA
GAN
Generative Optimization
Joint Method of GAN and Activation Maximization

3 Experiments
1. Generative DNA Model

1.1: Exploring the Latent Encoding
1.2: Capturing Exon Splice Site Signals

2. Designing DNA

4 Generative Modeling Architecthures

17 / 32

Experiment 2: Designing DNA

Run several experiments for designing DNA sequences

The running theme will be DNA/protein binding

18 / 32

2.1: Explicit Predictor (PWM): Motif Matching

Goal: design DNA sequences using an explicit biologically motivated
predictor function
Predictor Function:

1 1-D convolution scans across the data, computing the inner product of
a fixed PWM with every length-K subsequence

2 Select the convolutional output with the highest value to get the final
score for the sequence

Used the joint method, employing a generator trained on sequences
from human chr 1

19 / 32

2.2: Learned Predictor (DeepBind): Protein Binding

Goal: Explore the use of a predictor model which has been learned
from data → Design new sequences which have high binding scores

Oracle model To simulate the process of evaluating candidate
sequences, use a proxy model which is trained on Chip-Seq data. This
model can be queried with new designed sequences to gauge their
expected binding score

20 / 32

2.2: Learned Predictor: Protein Binding
GAN for generating new sequences

Using only samples with oracle scores less than 40% binding
likelihood, train a gan to generate new sequences, and then test the
generated sequences on the oracle.

21 / 32

2.2: Learned Predictor: Protein Binding
Optimizing Multiple Properties

1 Design DNA sequences which preferentially bind to one protein in a
family but not the other

2 Similarly, design sequences where two predictors model binding of the
same protein, but under two different molecular concentrations

22 / 32

Future Directions

Train an encoder E which maps data back to latent codes: E(x) = z,
making it easier to find latent encodings for specific sequences

Build a conditional GAN model and combine it with the joint
architecture - allowing some properties to remain fixed while others
were tuned

Domain adaptation. E.g. provide a map of where we want certain
components (introns, exons, promoters, enhancers) to be, and a
generative model would dream up plausible sequences with the
desired properties

23 / 32

Outline

1 Intro

2 Generative Design of DNA
GAN
Generative Optimization
Joint Method of GAN and Activation Maximization

3 Experiments
1. Generative DNA Model

1.1: Exploring the Latent Encoding
1.2: Capturing Exon Splice Site Signals

2. Designing DNA

4 Generative Modeling Architecthures

23 / 32

RNNs

Training: maximize the likelihood of predicting the next char
Generating: Sample the model’s prediction at each time t and feed back
as the input to the next step t + 1 (arbitrarily long seqs)

Can be trained to generate sequences in conditional manner,
producing outputs which have some desired property. Do this by
appending extra labelled data y (e.g. sentiment) to the inputs xt .

24 / 32

RNNs

Suitability for DNA

No successful variant of activation maximization or plug & play that
operates on RNNs.

Also, without a learned latent encoding, we are limited to tune a
conditional RNN for which we explicitly train the model for (e.g. no
flipping the sequence).

25 / 32

Deep Autoregressive Models

Training

Instead of feeding inputs only one at a time and relying on the
network to memorize past inputs, we can alternatively show it the
entire past history up to that point

Generating

Similar to RNNs, feed the history of previous predictions as input for
each time step.

Can also be built as conditional models, enabling the generation of
sequences with tailored properties.

26 / 32

Deep Autoregressive Models

Suitability for DNA: Similar to RNNs, they require supervised training
with a labelled dataset and that these properties must be chosen
beforehand and built in during training.

27 / 32

Variational Autoencoders

In contrast to the 2 previous models, VAEs have the ability to learn a
controllable latent representation of data in an unsupervised manner

By changing the latent variable z, we can modify the synthetic data
that the model generates.

28 / 32

Variational Autoencoders

Encoder E : transforms data to latent variables, x → z

Decoder (or generator) G : transforms latent variables to generated
data, z → x ′

VAEs use probability distributions rather than deterministic functions
to model these transformations

To encode, we sample z from a distribution q(z |x)
To decode, we do likewise for x from a distribution p(x |z).
q and p are modelled via DNNs.

29 / 32

Variational Autoencoders

Training:

Goal: make the error from x → z → x ′ as small as possible

For VAEs, this reconstruction error is given by

Lrecon := Ez∼q(z|x)[−logp(x |z)] (6)

In order to reconstruct successfully, the model must learn how to
capture the essential properties of the data within the latent variable z

Regularization encourages the latent codes to vary smoothly. This is
captured by a KL divergence term between q(z |x) and a fixed prior
on the latent space p(z) (e.g. normal)

The full VAE objective which is minimized during training is

Lrecon + DKL(q(z |x)||p(z)) (7)

30 / 32

Variational Autoencoders

Suitability for DNA:

It has been observed that if we use a strong decoder network, such as
an RNN, VAEs will exhibit a preference to push the KL divergence
term to zero

This causes the latent code to be ignored and the generative process
is handled completely by the decoder

Without learning a meaningful latent code, such models are no better
than a standard RNN

31 / 32

All Methods

32 / 32

	Intro
	Generative Design of DNA
	GAN
	Generative Optimization
	Joint Method of GAN and Activation Maximization

	Experiments
	1. Generative DNA Model
	2. Designing DNA

	Generative Modeling Architecthures

