Visual Feature Attribution using Wasserstein GANs

Christian F. Baumgartner¹ Li Ender Konukoglu¹ for ¹Computer Vision Lab, ETH Zurich

Lisa M. Koch² Kerem Can Tezcan¹ Jia Xi Ang¹ for the Alzheimer's Disease Neuroimaging Initiative* ch ²Computer Vision and Geometry Group, ETH Zurich

CVPR 2018

Presenter: Jack Lanchantin

Visual Attribution Methods

- Most visual attribution methods training a classifier to predict the class and then use one of the following:
 - Saliency maps (gradient of class w.r.t image)
 - Activation maps (activations of the feature maps during classification)

Visual Attribution Methods

- Shwartz-Ziv & Tishby showed that during training, NNs minimize the mutual information between input and output layers, thus compressing input features
 - The model may ignore features with low discriminative power if stronger features are available.
 - If there is evidence for a class at multiple locations in the image some locations may not influence the classification and may not be detected
 - \succ Training may be working in opposition to the goal of visual attribution

This paper

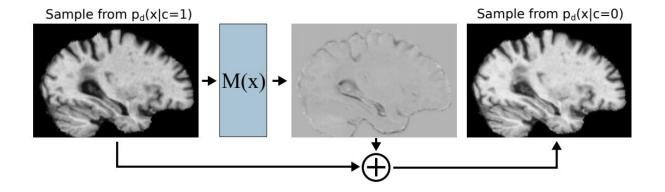
- Try to visualize evidence of a particular category in a way that captures all category-specific effects in an image.
- Find a map s.t. when added to image of one class, changes to another class
- 2 Differences between previous methods:
 - Does not rely on a classifier (assumes test image categories have already been determined)
 - Requires a baseline class (e.g. benign MRI image)

Problem Formulation

- Given:
 - Classes c \in {0, 1}, a baseline class and a class of interest
 - Image x
 - Distribution of images from class c = 0 with p(x|c = 0)
 - Distribution of images from class c = 1 with p(x|c = 1)

Problem Formulation

Estimate a map function M(.) that, when added to an image x_i from category c = 1, creates an image $y_i = x_i + M(x_i)$ which is indistinguishable from the images sampled from p(x|c = 0).



Visual Attribution GAN (VAGAN)

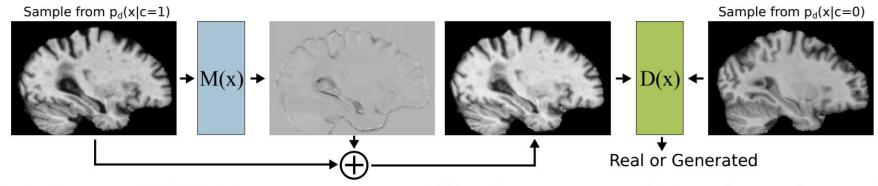


Figure 2. Overview of VA-GAN. During training images are sampled from the categories $c \in \{0, 1\}$. Images from c = 1 are passed to the map generating function M(x). The map generator aims to create additive maps which produce generated images that the critic D(x) cannot distinguish from images sampled from $p_d(x|c=0)$. The critic, D(x) tries to assign different values to generated and real images. During testing, M(x) can be used directly to predict a map in a single forward pass.

Visual Attribution GAN (VAGAN)

$$\mathcal{L}_{GAN}(M,D) = \mathbb{E}_{x \sim p_d(x|c=0)}[D(x)] - \mathbb{E}_{x \sim p_d(x|c=1)}[D(x+M(x))].$$

 $\mathcal{L}_{reg}(M) = ||M(x)||_1$

 $M^* = \operatorname*{argmin}_{M} \max_{D \in \mathcal{D}} \mathcal{L}_{GAN}(M, D) + \lambda \mathcal{L}_{reg}(M)$

where *D* is the set of 1-Lipschitz functions

Baseline Approach - Additive Perturbation Maps

- Train a classifier f(x) = p(c = 1) and then optimize map *m* to lower p(c = 1)
 - I.e. the image $y_i = x_i + m$ should minimize $f_i(y_i)$
 - Similar to VAGAN except that m is not a function of x_i
- Finding image map *m* involves minimizing:

$$m^{*} = \underset{m}{\operatorname{argmin}} f(x_{i} + m) + \omega_{1} ||m||_{1} + \omega_{2} \sum_{u} ||\nabla m(u)||_{\beta}^{\beta}.$$

where *u* are the pixels of *m*

Synthetic Data Experiments

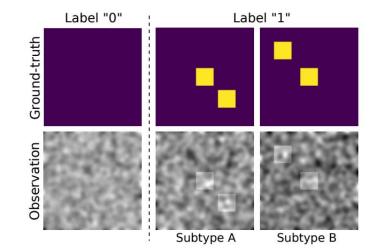


Figure 3. Description of synthetic data. We generated noisy observations from ground-truth effect maps. The dataset contained two categories: A baseline category 0 (e.g. healthy images) and category with an effect (e.g. patient images). The images in category 1 contained one of two subtypes, A or B, which is unknown to the algorithms. A: box in the lower right, B: box in the upper left.

Synthetic Data Experiments

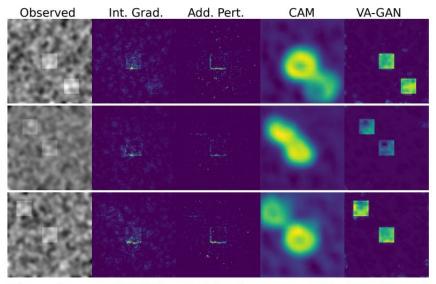


Figure 4. Examples of visual attribution on synthetic data obtained using the compared methods.

14	Method	mean	std.	
	Guided Backprop [55]	0.14	0.04	
	Integrated Gradients [56]	0.36	0.11	
	CAM [67]	0.48	0.04	
	Additive Perturbation	0.06	0.03	
	VA-GAN	0.94	0.07	

Tabla	1	NI	CC	cooroc	for	avparimanta	on	aunthatia data
Table	1.	IN	u	scores	101	experiments	on	synthetic data.

Experiments on real neuroimaging data

- Subjects who were diagnosed with MCI during a baseline examination but progressed to AD in one of the follow-up scans.
- We then aligned those images rigidly and subtracted them from each other to obtain an observed disease effect map.
- Training, validation, test: 825, 256, 207 samples

		Int. Grad.	Add. Pert.	САМ	VA-GAN	Observed
	rid: 0336 (ADAS13: 27.33)					AND A
	rid: 0336 (AI			A CONTRACT		
ata. –	rid: 0945 (ADAS13: 34)					
	rid: 0945 (A			C LANGE		B
	DAS13: 61)					
	rid: 0906 (ADAS13: 61)		NIL CONTRACTOR	ANTIC CONTRACTOR	NITE OF	

2.5

 Method
 mean
 std.

mean	siu.
0.05	0.03
0.09	0.07
0.13	0.05
0.11	0.05
0.27	0.15
	0.05 0.09 0.13 0.11