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Local Interpretable Model-agnostic Explanations (LIME)

e (Goal: identify an interpretable model over the interpretable representation
that is locally faithful to the classifier

e Finds a representation that is understandable to humans, regardless of the
actual features used by the model.
x € RY : original representation of an instance being explained
x' € {0, 1} : binary vector for its interpretable representation



Example: Interpretable Representation for Text
Classification

e Binary vector indicating the presence or absence of a word
o Independent of what the classifier uses (e.g. word embeddings)



Example: Interpretable Representation for Image
Classification

e Binary vector indicating the “presence” or “absence” of a contiguous patch of similar
pixels (a super-pixel), while the classifier may represent the image as a tensor with
three color channels
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Example: Interpretable Representation for Image
Classification

e Binary vector indicating the “presence” or “absence” of a contiguous patch of similar
pixels (a super-pixel), while the classifier may represent the image as a tensor with
three color channels
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(a) Original Image (b) Explaining Electric guitar (c) Explaining Acoustic guitar  (d) Explaining Labrador



Explanation Models

e Original model f: R%— R
e Interpretable model g € G: RY— R

e Domain of gis {0,1}¢ where d’ is the number of interpretable components
o l.e. g acts over absence/presence of the interpretable components.



Explanation Models

Original model f: R— R
Interpretable model g € G: RY— R

e Domain of gis {0,1}¢ where d’ is the number of interpretable components
o l.e. g acts over absence/presence of the interpretable components.

T (2): proximity between an instance z to x, so as to define locality around x
o L(f, g, m): measure of how unfaithful g is in approximating fin the locality
defined by
e ()(g): measure of complexity of the explanation g (tradeoff of interpretability)



LIME

e 2 objectives:
o Local fidelity: minimize L(f, g, 1)
o Interpretability: minimize Q(g)

e The explanation produced by LIME is obtained by the following:

§(x) = argmin  L(f, g, mz) + Q(g)

geG



Sampling for Local Exploration

e Approximate L(f, g, T ) by drawing samples, weighted by
e Sample instances around x’ by drawing nonzero elements of x” uniformly at
random (number of such draws is also uniformly sampled)



Sampling for Local Exploration

Approximate L(f, g, T ) by drawing samples, weighted by 1

Sample instances around x’ by drawing nonzero elements of X" uniformly at
random (number of such draws is also uniformly sampled)

e Given a perturbed sample z' € {0,1}¢ (which contains a fraction of the nonzero
elements of x’), we recover the sample in the original representation z € R¢
and obtain f(z), which is used as a label for the explanation model.
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(a) Original Image (b) Explaining Electric guitar (c) Explaining Acoustic guitar ~ (d) Explaining Labrador



Sampling for Local Exploration
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Sampling for Local Exploration
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Figure 3: Toy example to present intuition for LIME.
The black-box model’s complex decision function f
(unknown to LIME) is represented by the blue/pink
background, which cannot be approximated well by
a linear model. The bold red cross is the instance
being explained. LIME samples instances, gets pre-
dictions using f, and weighs them by the proximity
to the instance being explained (represented here
by size). The dashed line is the learned explanation
that is locally (but not globally) faithful.




Sparse Linear Explanations

e Let G be the class of linear models, such that g(z') = w, - Z

e Use the locally weighted square loss as L
o letm (z) = exp(-D(x, z)? /o2 ) be an exponential kernel defined on some distance function D
(e.g. cosine distance for text, L2 distance for images) with width o.

L(fg,7m)= Y m(2)(f(2)—g(z))"

z,2'€Z



Sparse Linear Explanations

Algorithm 1 Sparse Linear Explanations using LIME

Require: Classifier f, Number of samples IV
Require: Instance z, and its interpretable version z’

Require: Similarity kernel 7., Length of explanation K
Z+{}

for i € {1,2,3,..., N} do
z; < sample_around(z")
Z +— 2 U (zi, f(z),mz(2:))
end for
w + K-Lasso(Z, K) > with z; as features, f(z) as target
return w




Sparse Linear Explanations




Are explanations faithful to the model?
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Figure 6: Recall on truly important features for two
interpretable classifiers on the books dataset.
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Figure 7: Recall on truly important features for two
interpretable classifiers on the DVDs dataset.



Husky vs Wolf

(a) Husky classified as wolf (b) Explanation

Figure 11: Raw data and explanation of a bad
model’s prediction in the “Husky vs Wolf” task.



