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Explanation Models

e f. original prediction model to be explained

e (. the explanation model.

e Explanation models often use simplified inputs x’ that map to the original
inputs through a mapping function x = h_(x’).

e Focus on local methods designed to explain a prediction f(x) based on a
single input x.
e Local methods try to ensure g(z’) = f( h (z’) ) whenever z’= x’



Additive Feature Attribution Methods

Methods with an explanation model that is a linear function of binary variables:

M
9(') = g0+ Y _ ¢z, (1)
=1

where 2’ € {0,1}M, M is the number of simplified input features, and ¢; € R.



LIME

The loss function to force g to well approximate f

\ Optional regularization of g
4
¢ = argmin L(f, g, 7,) + Q(9)
9geY t

$ Kernel specifies what ‘local”’ means

A class of interpretable models (linear models)



DeepLIFT

Minimizes the following function:

zn: CA:I:,,;AO = AO,

=1

where 0 = f(x) is the model output, Ao = f(x) — f(r), Az; = x; — r;, and r is the reference input.
If we let ¢; = Caz; A0 and ¢g = f(r), then DeepLIFT’s explanation model matches Equation 1 and
1s thus another additive feature attribution method.



Shapley Value Estimation

e Assigns an importance value to each feature that represents the effect on the
model prediction of including that feature.
e Given feature subsets S S F, where F is the set of all features:
o One model fg ., is trained with feature i/ present (i not in S)
o Another model f is trained with the feature withheld.

di= |S|!(|F||;||!S| =0 [fsutir(@sugiy) — fs(xs)]

SCF\{i}



Properties of Additive Feature Attribution

A surprising attribute of the class of additive feature attribution methods is the
presence of a single unique solution in this class with three desirable properties.



Property 1: Local Accuracy

M
f(z) =g(z') = go+ > bix} (%)
=1

The explanation model g(z') matches the original model f(x) when x = hy(z'), where ¢y =
f(hz(0)) represents the model output with all simplified inputs toggled off (i.e. missing).



Property 2. Missingness

/
Missingness constrains features where x; = 0 to have no attributed impact.



Property 3: Consistency

If a model changes so that some z’s contribution increases or stays the same
regardless of the other inputs, that zi’s attribution should not decrease.

Property 3 (Consistency) Let f,(2') = f(hz(2")) and 2’ \ i denote setting z;, = 0. For any two

models f and f', if
f2(#) = fo(2"\4) = fo(2') — fa (2 \ 9) 7
for all inputs 2’ € {0,1}M, then ¢;(f',x) > ¢i(f, ).



Unifying Theorem for Properties 1-3

Theorem 1 Only one possible explanation model g follows Definition 1 and satisfies Properties 1, 2,
and 3:
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where |2'| is the number of non-zero entries in 2/, and z' C x' represents all 2z’ vectors where the
non-zero entries are a subset of the non-zero entries in x'.



SHAP (SHapley Additive exPlanation) Values
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This paper proposes SHAP values as a unified measure of feature importance.
These are the Shapley values of a conditional expectation function of the original
model

l.e. they are the solution to Equation 8, where f (Z') = f (h (Z')) = E[f(2) | z¢], and
S is the set of non-zero indexes in Z’

SHAP values provide the unique additive feature importance measure that
adheres to properties 1-3 and uses conditional expectations to define simplified
inputs.
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Figure 1: SHAP (SHapley Additive exPlanation) values attribute to each feature the change in the
expected model prediction when conditioning on that feature. They explain how to get from the
base value E[f(z)] that would be predicted if we did not know any features to the current output
f(x). This diagram shows a single ordering. When the model is non-linear or the input features are
not independent, however, the order in which features are added to the expectation matters, and the
SHAP values arise from averaging the ¢; values across all possible orderings.
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The order matters!

SHAP values result from averaging over all N! possible orderings.
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SHAP (SHapley Additive exPlanation) Values

Implicit in this definition of SHAP values is a simplified input mapping, h (z') = z
where z, has missing values for features not in the set S.
Since most models cannot handle arbitrary patterns of missing input values, we

approximate f(z,) with E[f(z) | z.].



Model-Agnostic SHAP Approximations

1. Shapley sampling values method (previous work)
2. Kernel SHAP



Kernel SHAP (Linear LIME + Shapley values)

§ = argmin L(f,g,m) + Q(g). 2)
geg

Theorem 2 (Shapley kernel) Under Definition 1, the specific forms of 7/, L, and $) that make
solutions of Equation 2 consistent with Properties 1 through 3 are:
Q(g) =0,
M-—-1
il ( ) |
(M choose |2'|)|2'|(M — |2'|)
_ 2
L(f,g,m) = Y _ [f(hz'(#)) — 9(z")]

z'eZ

Tyt (Z,)a

where |2'| is the number of non-zero elements in z'.



Kernel SHAP (Linear LIME + Shapley values)
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Model-Specific SHAP Approximations

1. Linear SHAP
2. Deep SHAP



Linear SHAP

For linear models, if we assume input feature independence (Equation 11), SHAP
values can be approximated directly from the model’s weight coefficients.

Corollary 1 (Linear SHAP) Given a linear model f(x) = Z?; w;z; +b: ¢o(f,z) =band

¢:(f,z) = wj(z; — Elz;])



Deep SHAP (DeepLIFT + Shapley values)

Deep SHAP combines SHAP values computed for smaller components of the network into SHAP
values for the whole network. It does so by recursively passing DeepLIFT’s multipliers, now defined
in terms of SHAP values, backwards through the network

zifs = 13
Mk T g = Bl .
¢i B
Vie{i,2y My, f; = ” Efzj[yy)] (14)
2
My fy = Z Ty, £, Mz, f3 chain rule (15)
j=1

Gi(f3,y) = my, £, (vi — Elys]) linear approximation (16)
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Figure 5: Explaining the output of a convolutional network trained on the MNIST digit dataset. Orig.
DeepLIFT has no explicit Shapley approximations, while New DeepLIFT seeks to better approximate
Shapley values. (A) Red areas increase the probability of that class, and blue areas decrease the
probability. Masked removes pixels in order to go from 8 to 3. (B) The change in log odds when
masking over 20 random images supports the use of better estimates of SHAP values.



