FastXML: A Fast, Accurate and Stable Tree-classifier for

eXtreme Multi-label Learning

Prabhu & Varma
KDD 2014

February 5, 2019

@ Introduction

@ Objective in eXtreme Multi-Label (XML) classification is to learn a
classifier that can automatically tag a data point with the most
relevant subset of labels from a large label set

FastXML Overview

o FastXML learns a hierarchy, not over the label space as is traditionally
done in the multi-class setting, but rather over the feature space

@ The intuition is that only a small number of labels are present, or
active, in each region of feature space.

o Efficient prediction can be made by determining the region in which a
test point lies by traversing the learnt feature space hierarchy and
then focusing exclusively on the set of labels active in the region

FastXML Overview

@ FastXML learns an ensemble of trees

o FastXML defines the set of labels active in a region to be the union of
the labels of all training points present in that region

@ Predictions are made by returning the ranked list of most frequently
occurring active labels in all the leaf nodes in the ensemble containing

the test point

© Training

Learning to Partition a Node

@ Training FastXML consists of recursively partitioning a parents
feature space between its children

@ Such node partitions should be learnt by optimizing a global measure

of performance such as the ranking predictions induced by the leaf
nodes

Learning to Partition a Node

e Data {(x;,y;)¥;} with D dimensional feature vectors x; and L
dimensional binary label vectors y; € 0,1t

@ Discounted Cumulative Gain (DCG) at k of a ranked vector r given
ground truth label vector y with binary levels of relevance:

k
yr
Lpceek(r,y) =) ——F—= 1

@ Unlike precision, DCG is sensitive to both the ranking and relevance
of predictions.

Learning to Partition a Node

FastXML partitions the current node’s feature space by learning a linear
separator w:

min |[w]ls + 205(51-) log(1 + e_‘st“’sz)
—Cr Z 3(1+6)LypCGar (', ¥i)

_CZ (1 =8)LyDCGaL (™ yi)

wrt. weRP 8e{-1,+1} vt r” €1I(1,1L)

i indexes the training points present at the node being partitioned,

0; € {—1,41} indicates whether point i was assigned to the negative or
positive partition,

and r™ and r~ represent the predicted label rankings for the positive and
negative partition respectively.

Learning to Partition a Node

@ DCGOL is performed on each node, even though the ultimate leaf
node rankings will be evluated at k << L

@ The separator function allows a label to be assigned to both partitions
if 2 separate points containing the same label are split into the diff.
feature space. This makes FastXML robust.

Learning to Partition a Node

Algorithm 1 FastXML({x:,y:},,T)

parallel-for i =1,..,7 do
n"°" <+ new node
n"% Id + {1, vy N} # Root contains all instances
GROW-NODE-RECURSIVE(n"°%")
Ti < new tree
Ti.root < n"o°t
end parallel-for

return 71,.., 71

procedure GROW-NODE-RECURSIVE(n)
if |n.Id| < MaxLeaf then # Make n a leaf
n.P <~ PROCESS-LEAF({X;,yi }/1,7)
else # Split node and grow child nodes recursively
{n.w, n.left_child, n.right_child }
< SPLIT-NODE({x;, ¥ }}L1,n)
GROW-NODE-RECURSIVE(n.left_child)
GROW-NODE-RECURSIVE(n.right_child)
end if
end procedure

procedure PROCESS-LEAF({Xi,y;}iv1,n)

Yien.1d¥i
P + top-k (_E—\n.IIdT Y

return P # Return scores for top k labels
end procedure

Training FastXML

@ Start by setting w = 0 and d; to be 1 or +1 uniformly at random.
@ Each iteration, then, consists of taking three steps.

@ r+ and r are optimized while keeping w and § fixed. This determines
the ranked list of labels that will be predicted by the positive and
negative partitions respectively

@ 0 is optimized while keeping w and r+ fixed. his step assigns training
points in the node to the positive or negative partition.

© Optimizing w while keeping § and r+ fixed is taken only if the first two
steps did not lead to a decrease in the objective function.

10/12

© Testing

10/12

Algorithm 3 PREDICT({T1,..T7},x)

for:=1,..,T do
n < 7T;.root
while n is not a leaf do
W — N.wW
if w'x > 0 then
n < n.left_child
else
n < n.right_child
end if
end while
P}eaf(x) —n.P
end for

r(x) = rankg (% S P%eaf(x))
return r(x)

11/12

(d) RCV1-X N = 781K, D = 47K, L = 25K

Algorithm P1 (%) P3 (%) P5 (%)

FastXML 91.23+0.22 73.51 +0.25 53.31 = 0.65
MLRF 87.66 +0.46 69.8040.43 50.36 +=0.74
LPSR 90.04 £0.19 72.27+0.20 52.34 +£0.61
1-vs-All 90.18 £ 0.18 72.55+0.16 52.68 +=0.57

12/12

	Introduction
	Training
	Testing

