

Making Deep Learning Understandable for Analyzing Sequential Data about Gene Regulation

Dr. Yanjun Qi Department of Computer Science University of Virginia

Tutorial @ ACM BCB-2018

Today

- Machine Learning: a quick review
- Deep Learning: a quick review
- Background Biology: a quick review
- Deep Learning for analyzing Sequential Data about Regulation:
 - DeepChrome
 - AttentiveChrome
 - DeepMotif

https://www.deepchrome.org

https://qdata.github.io/deep2Read/

8/29/18

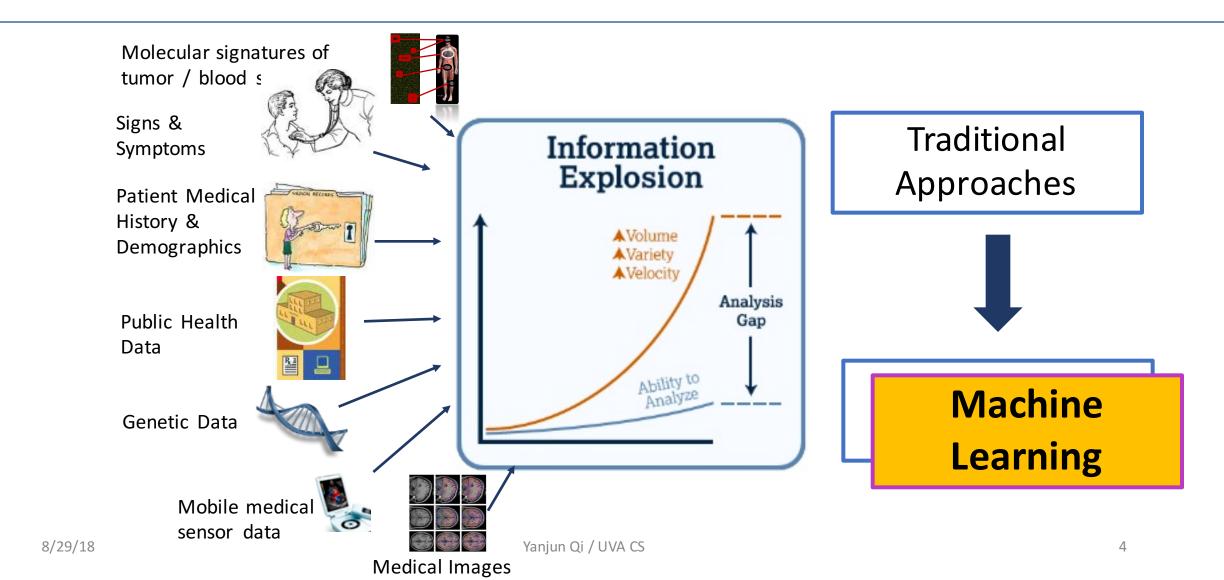
OUR DATA-RICH WORLD

- Biomedicine
 - Patient records, brain imaging, MRI & CT scans, ...
 - Genomic sequences, bio-structure, drug effect info, ...
- Science
 - Historical documents, scanned books, databases from astronomy, environmental data, climate records, ...
- Social media
 - Social interactions data, twitter, facebook records, online reviews, ...
- Business

• •

• Stock market transactions, corporate sales, airline traffic,

Challenge of Data Explosion in Biomedicine



BASICS OF MACHINE LEARNING

- "The goal of machine learning is to build computer systems that can learn and adapt from their experience." – Tom Dietterich
- "Experience" in the form of available data examples (also called as instances, samples)
- Available examples are described with properties (data points in feature space X)

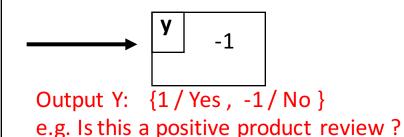
e.g. SUPERVISED LEARNING

- Find function to map input space X to output space Y $f: X \longrightarrow Y$
- So that the difference between *y* and *f(x)* of each example *x* is small.

e.g.

Х

I believe that this book is not at all helpful since it does not explain thoroughly the material. it just provides the reader with tables and calculations that sometimes are not easily understood ...



Input X : e.g. a piece of English text

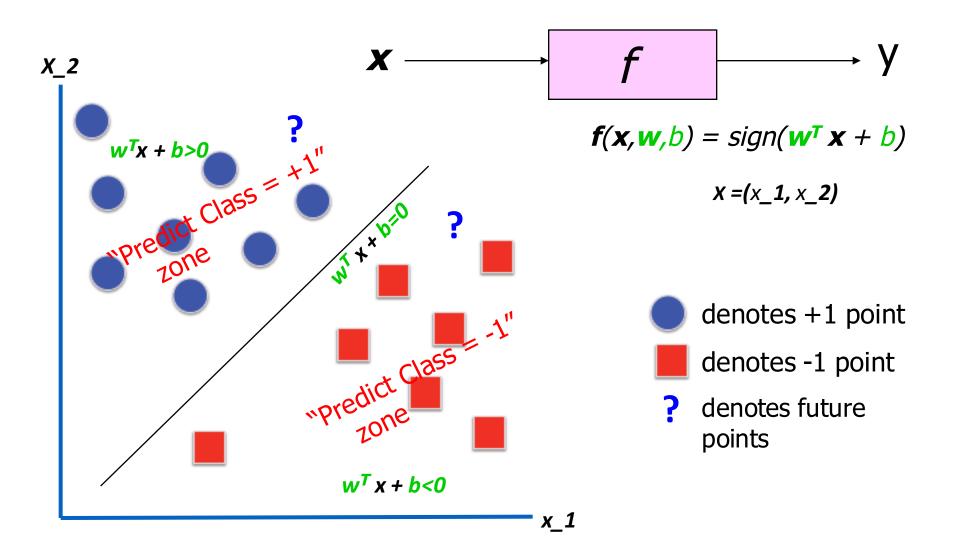
SUPERVISED Linear Binary Classifier

• Now let us check out a VERY SIMPLE case of

$$\boldsymbol{x} \longrightarrow \boldsymbol{f} \longrightarrow \boldsymbol{y}$$

e.g.: Binary y / Linear f / X as R²
f(x,w,b) = sign(w^T x + b)
X = (x_1, x_2)

SUPERVISED Linear Binary Classifier



Basic Concepts

- Training (i.e. learning parameters [W,b])
 - Training set includes
 - available examples' feature representation: x_1, \ldots, x_L
 - available corresponding labels y_1, \ldots, y_L
 - Find (*w*,*b*) by minimizing loss (i.e. difference between *y* and *f*(*x*) on available examples in training set)

(W, b) = argmin
W, b
$$i=1$$

 $L \ell(f(x_i), y_i)$

Basic Concepts

- Testing (i.e. evaluating performance on "future" points)
 - Difference between true $y_{?}$ and the predicted $f(x_{?})$ on a set of testing examples (i.e. *testing set*)
 - Key: example $x_{?}$ not in the training set

 Generalisation: learn function / hypothesis from past data in order to "explain", "predict", "model" or "control" new data examples

Basic Concepts

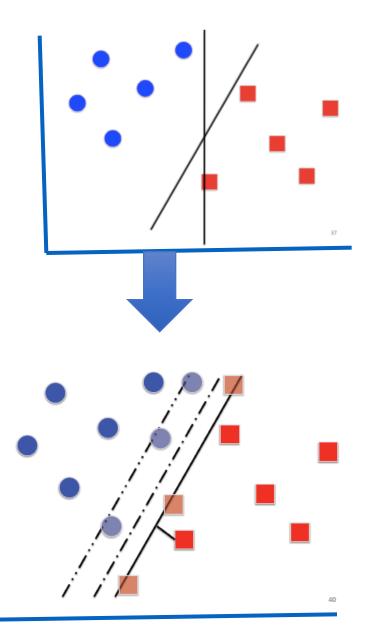
- Loss function
 - e.g. hinge loss for binary classification task

$$\sum_{i=1}^{L} \ell(f(x_i), y_i) = \sum_{i=1}^{L} \max(0, 1 - y_i f(x_i)).$$

- Regularization
 - E.g. additional information added on loss function to control *f*

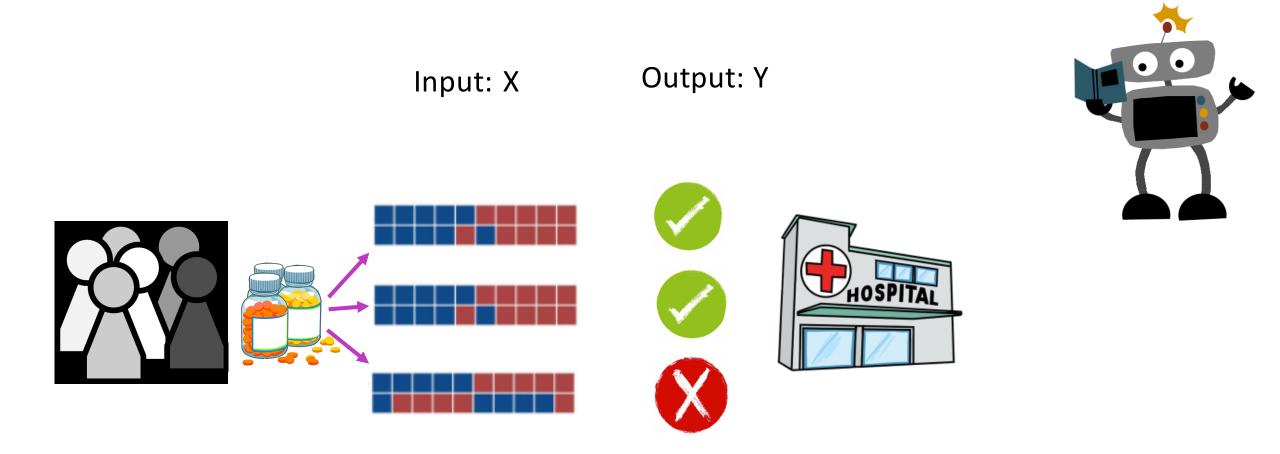
Maximize Separation Margin => Minimize $||w||^2$

T

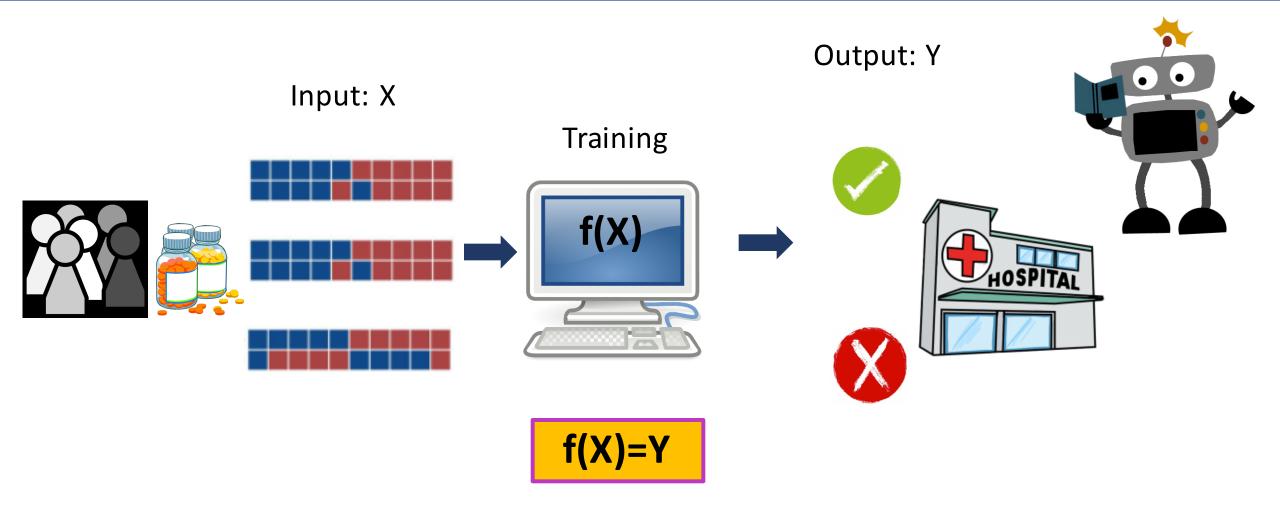


11

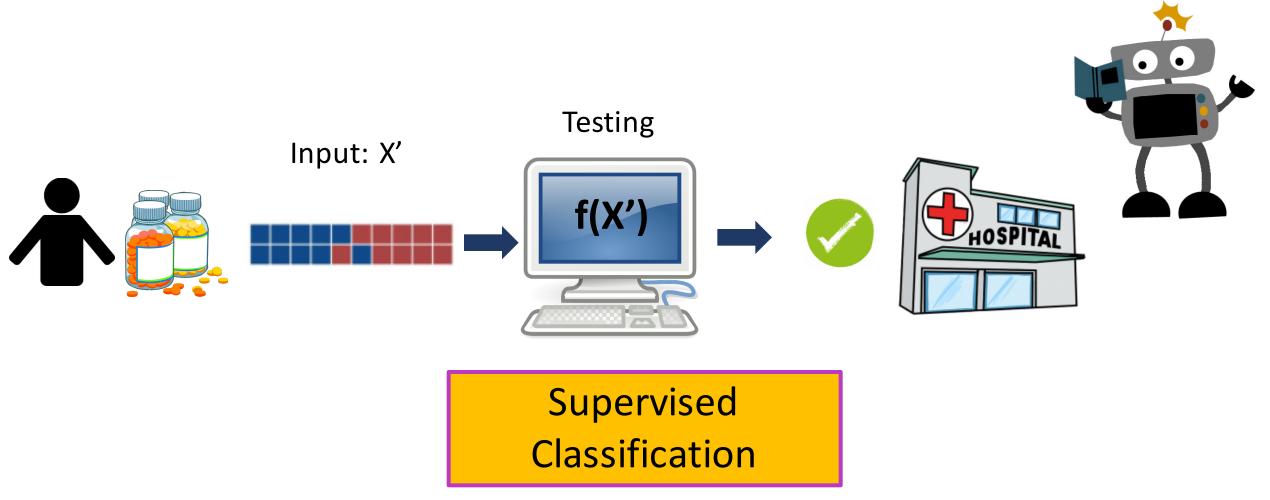
Basics of Machine Learning



Basics of Machine Learning

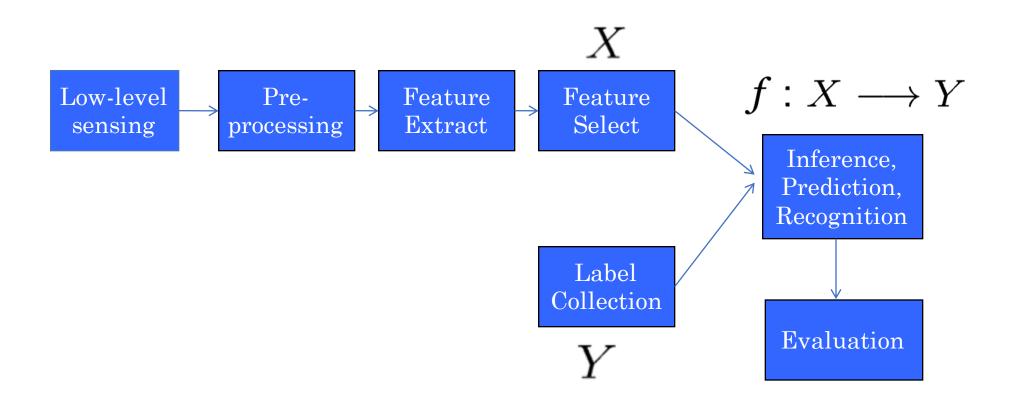


Basics of Machine Learning

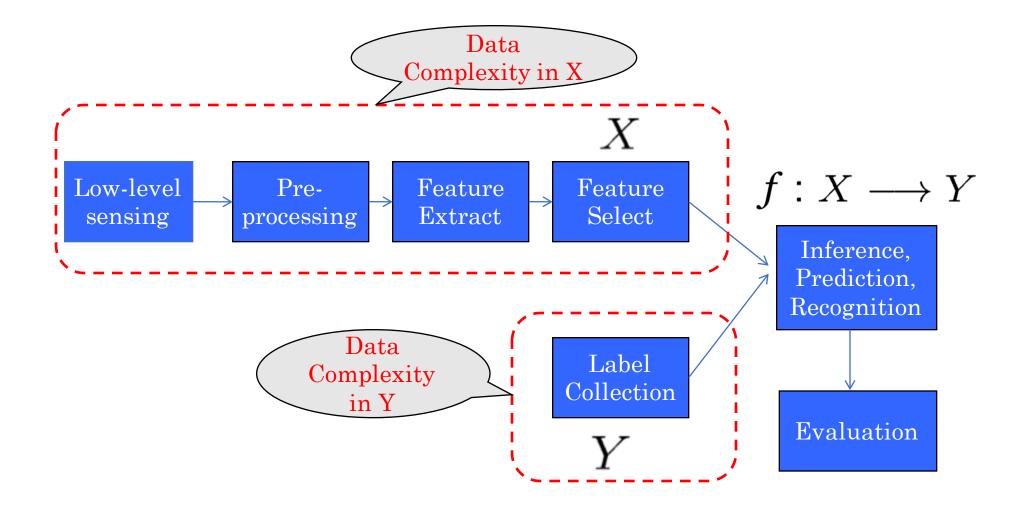


14

TYPICAL MACHINE LEARNING SYSTEM

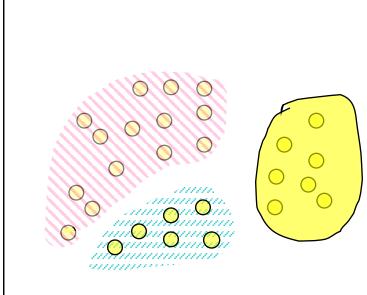


TYPICAL MACHINE LEARNING SYSTEM



UNSUPERVISED LEARNING : [COMPLEXITY OF Y]

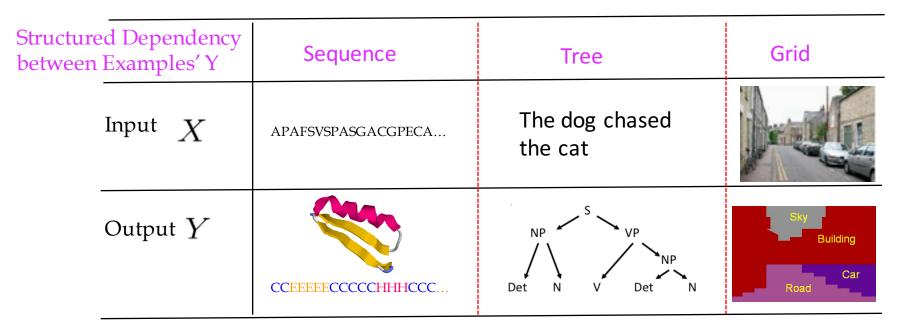
- No labels are provided (e.g. No Y provided)
- Find patterns from unlabeled data, e.g. clustering



e.g. clustering => to find "natural" grouping of instances given un-labeled data

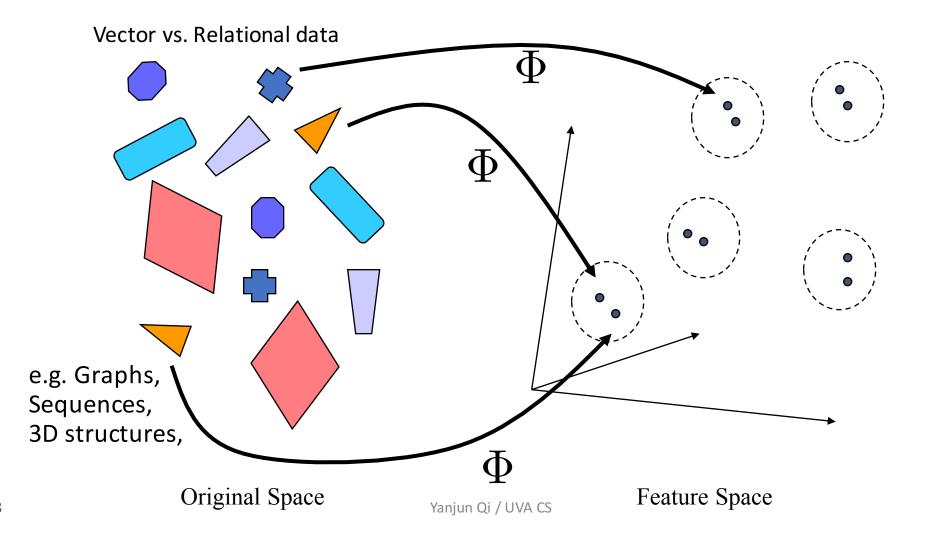
Structured Output Prediction: [COMPLEXITY in Y]

• Many prediction tasks involve output labels having structured correlations or constraints among instances



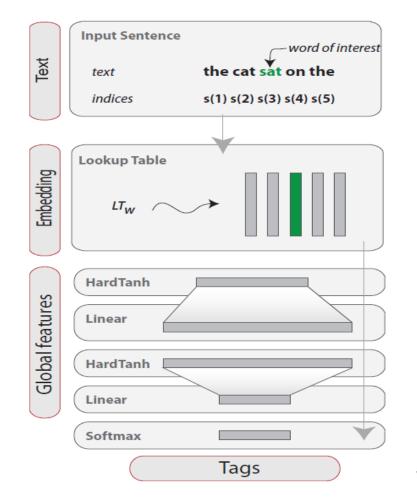
Many more possible structures between y_i, e.g. spatial, temporal, relational ...

Structured Input: Kernel Methods [COMPLEXITY OF X]

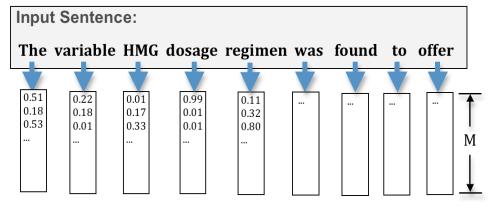


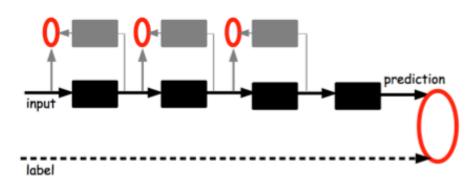
More Recent: Representation Learning [COMPLEXITY OF X]

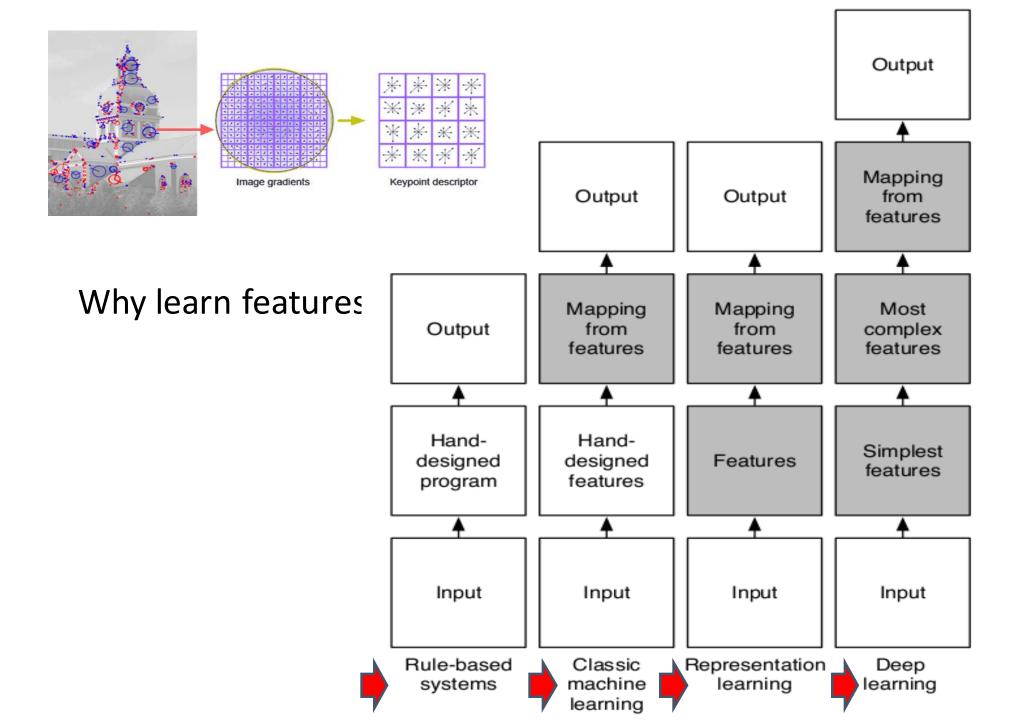
Deep Learning



Supervised Embedding







When to use Machine Learning ?

- 1. Extract knowledge from data
 - Relationships and correlations can be hidden within large amounts of data
 - The amount of knowledge available about certain tasks is simply too large for explicit encoding (e.g. rules) by humans
- 2. Learn tasks that are difficult to formalise
 - Hard to define well, except by examples (e.g. face recognition)
- 3. Create software that improves over time
 - New knowledge is constantly being discovered.
 - Rule or human encoding-based system is difficult to continuously re-design "by hand".

Recap

 $f: X \longrightarrow Y$

- Goal of Machine Learning: Generalisation
- Training
- Testing
- Loss

Today

- Machine Learning: a quick review
- Deep Learning: a quick review
- Background Biology: a quick review
- Deep Learning for analyzing Sequential Data about Regulation:
 - DeepChrome
 - AttentiveChrome
 - DeepMotif

https://www.deepchrome.org

https://qdata.github.io/deep2Read/

- Deep Learning
 - Why is this a breakthrough ?
 - Basics
 - History
 - A Few Recent trends

https://qdata.github.io/deep2Read/

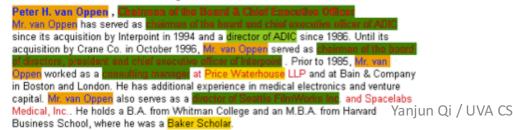
Deep Learning is Changing the World

Duration: 1.14

Control learning

Text analysis

8/29/18



Object recognition

26

MIT Technology Review

10 Breakthrough Technologies 2013

hink of the most frustrating, intractable, or simply annoying problems you can imagine. Now think about what technology is doing to fix them. That's what we did in coming up with our annual list of 10 Breakthrough Technologies. We're looking for technologies that we believe will expand the scope of human possibilities.

10 Breakthrough Technologies

2017

hese technologies all have staying power. They will affect the economy and our politics, improve medicine, or influence our culture. Some are unfolding now; others will take a decade or more to develop. But you should know about all of them right now.

Generative Adversarial Network (GAN)

Deep Learning

Deep Reinforcement Learning

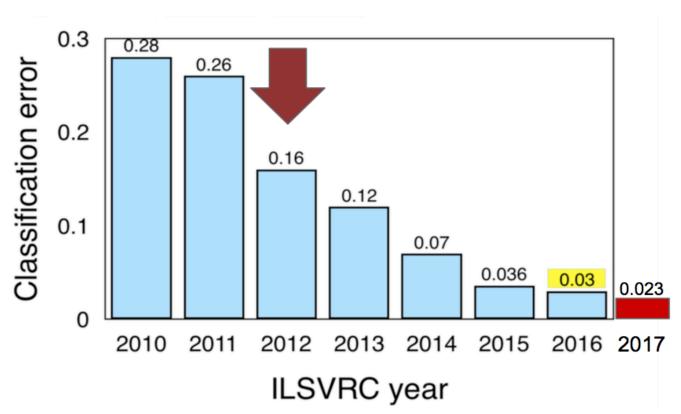
Why breakthrough ?

Breakthrough from 2012 Large-Scale Visual Recognition Challenge (ImageNet)

In one "very large-scale" benchmark competition (1.2 million images [X] vs.1000 different word labels [Y])

ImageNet Challenge

- 2010-11: hand-crafted computer vision pipelines
- 2012-2016: ConvNets
 - 2012: AlexNet
 - major deep learning success
 - 2013: ZFNet
 - improvements over AlexNet
 - o **2014**
 - VGGNet: deeper, simpler
 - InceptionNet: deeper, faster
 - o **2015**
 - ResNet: even deeper
 - o **2016**
 - ensembled networks
 - o **2017**
 - Squeeze and Excitation Network



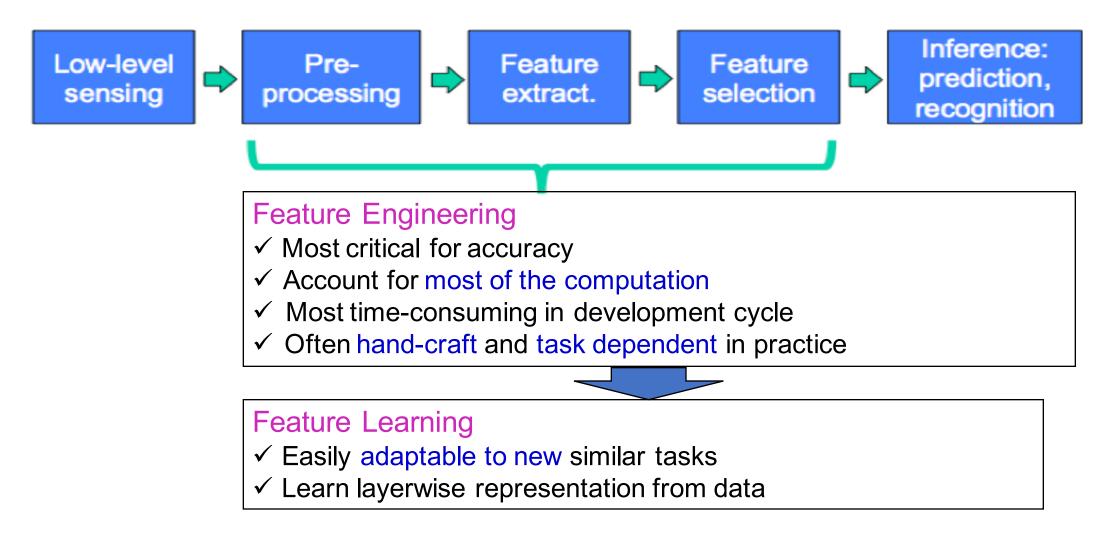
29

Adapt from From NIPS 2017 DL Trend Tutorial

DNNs help us build more intelligent computers

- Perceive the world,
 - e.g., objective recognition, speech recognition, ...
- Understand the world,
 - e.g., machine translation, text semantic understanding
- Interact with the world,
 - e.g., AlphaGo, AlphaZero, self-driving cars, ...
- Being able to think / reason,
 - e.g., learn to code programs, learn to search deepNN, ...
- Being able to imagine / to make analogy,
 - e.g., learn to draw with styles,

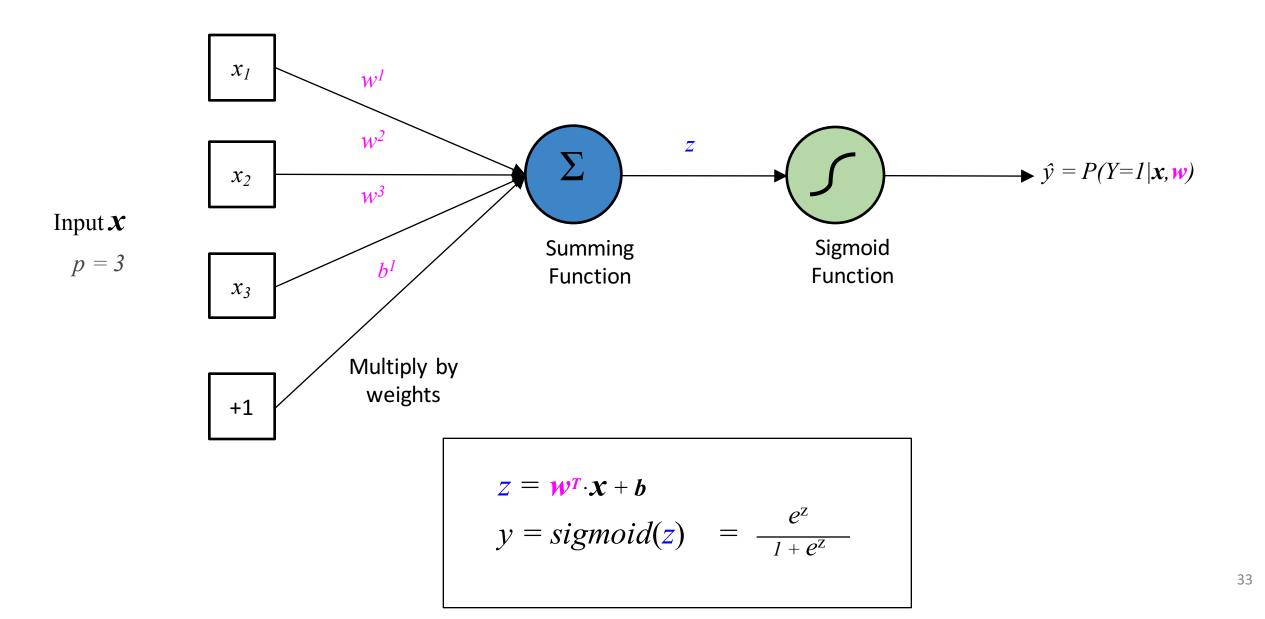
Deep Learning Way: Learning Representation from data



Basics

- Basic Neural Network (NN)
 - single neuron, e.g. logistic regression unit
 - multilayer perceptron (MLP)
 - various loss function
 - E.g., when for multi-class classification, softmax layer
 - training NN with backprop algorithm

One "Neuron": Expanded Logistic Regression

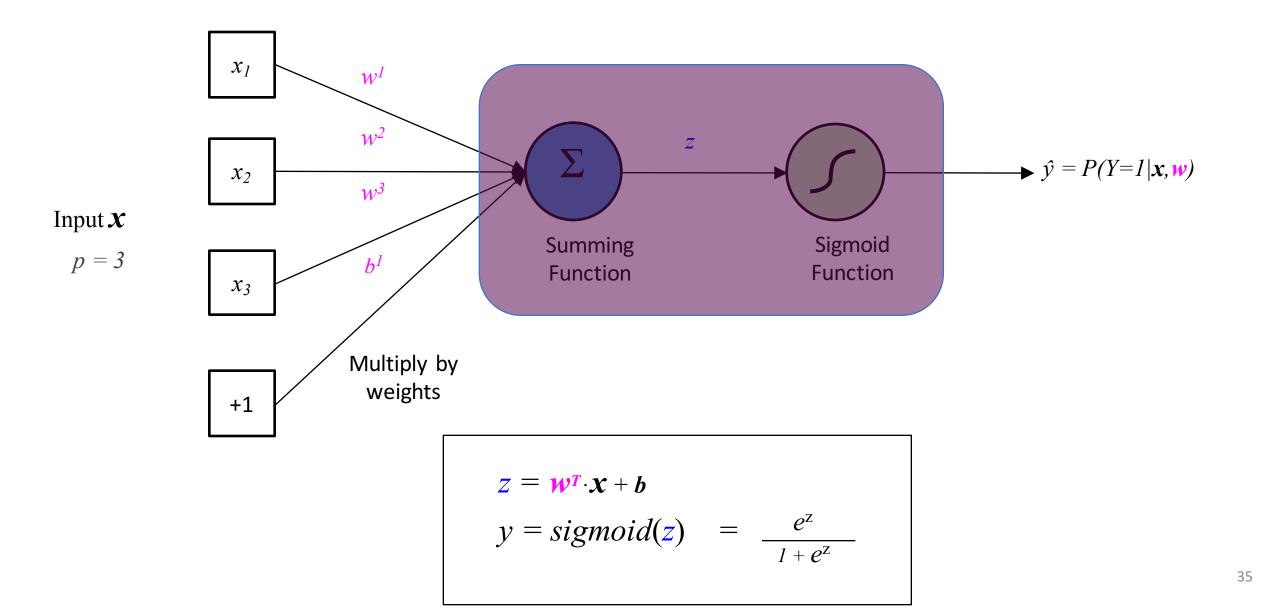


E.g., Many Possible Nonlinearity Functions

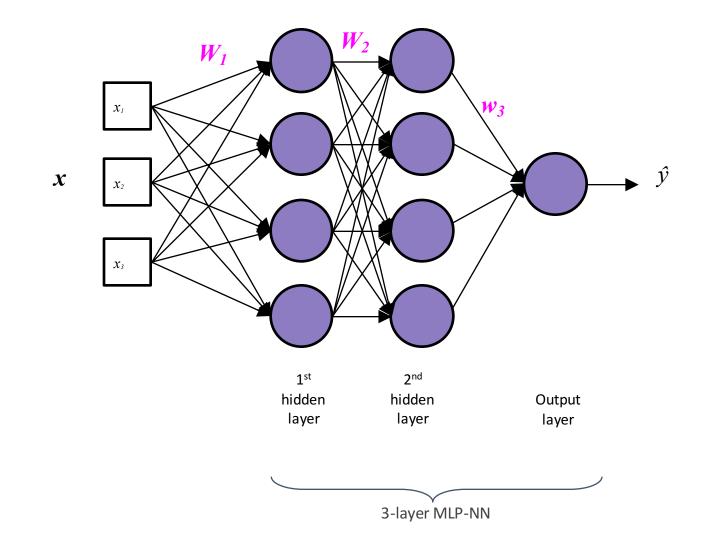
(aka transfer or activation functions)

Name	Plot	Equation	Derivative (w.r.t x)
Binary step		$f(x) = egin{cases} 0 & ext{for} & x < 0 \ 1 & ext{for} & x \ge 0 \end{cases}$	$f'(x)=egin{cases} 0 & ext{for} & x eq 0\ ? & ext{for} & x=0 \end{cases}$
Logistic (a.k.a Soft step)		$f(x)=rac{1}{1+e^{-x}}$	$f^\prime(x)=f(x)(1-f(x))$
TanH		$f(x)= anh(x)=rac{2}{1+e^{-2x}}-1$	$f^{\prime}(x)=1-f(x)^{2}$
Rectifier (ReLU) ^[9]		$f(x) = egin{cases} 0 & ext{for} & x < 0 \ x & ext{for} & x \ge 0 \end{cases}$	$f'(x) = egin{cases} 0 & ext{for} & x < 0 \ 1 & ext{for} & x \ge 0 \end{cases}$
kinedia.org/wiki/Activation_functi	on#Comparison of activation functions	usual	ly works best in practice

One "Neuron": Expanded Logistic Regression => "Neuron View"



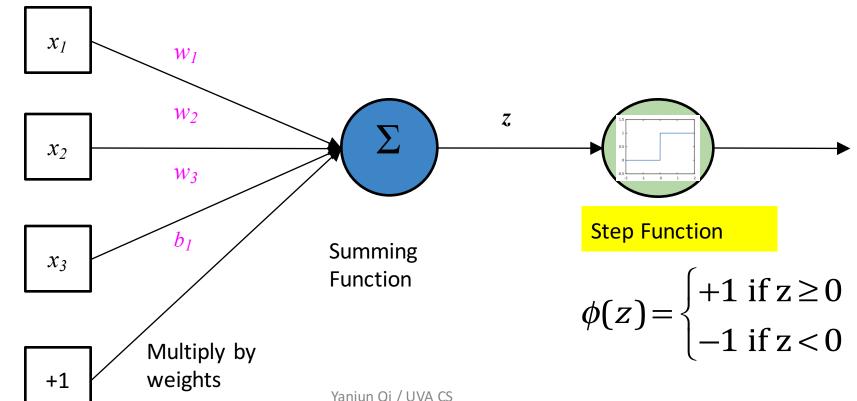
Multi-Layer Perceptron (MLP)- (Feed-Forward NN)



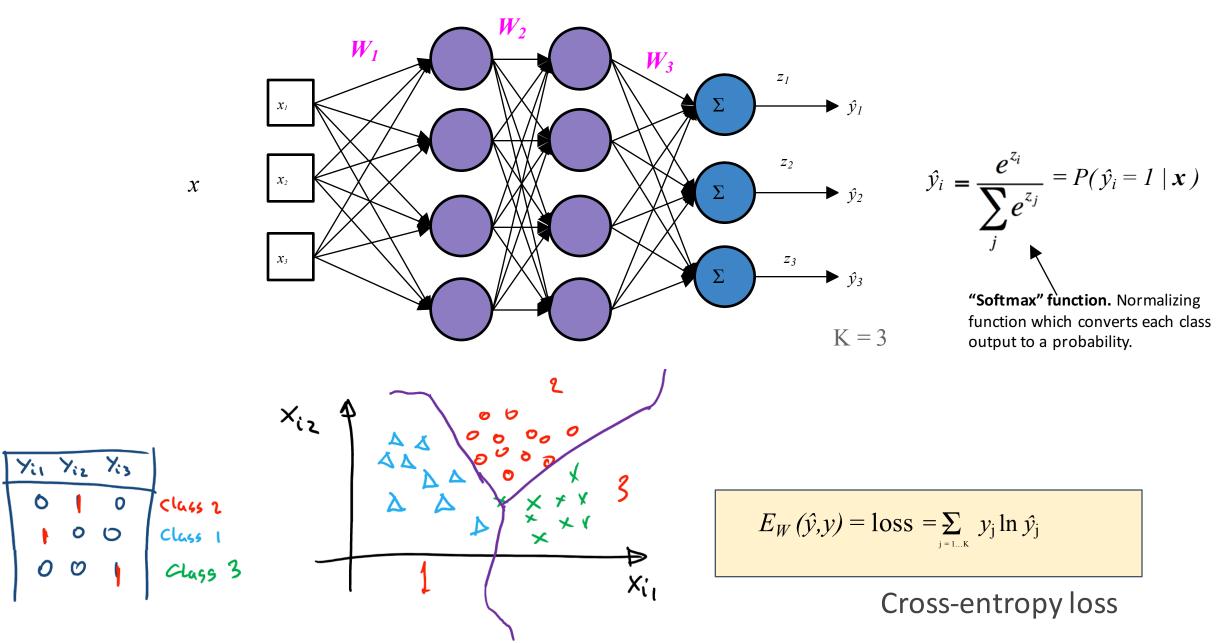
36

History - Perceptron: 1-Neuron Unit with Step

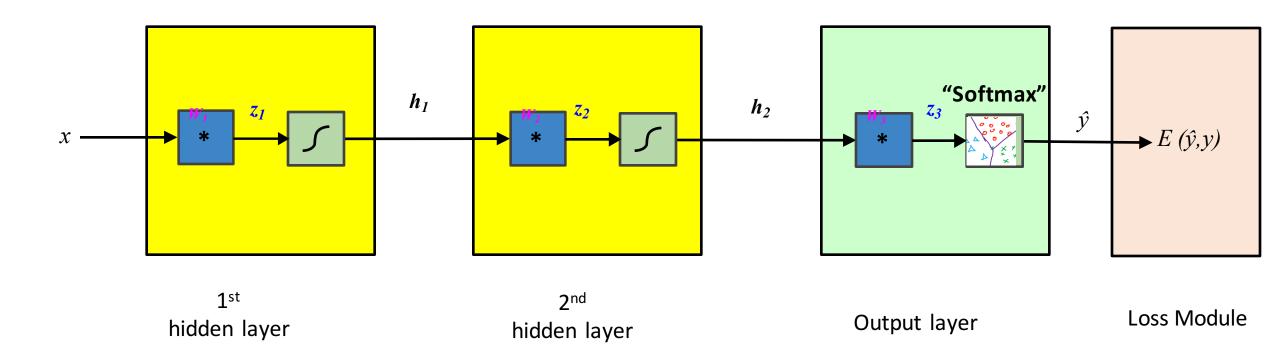
- -First proposed by Rosenblatt (1958)
- -A simple neuron that is used to classify its input into one of two categories.
- -A perceptron uses a step function



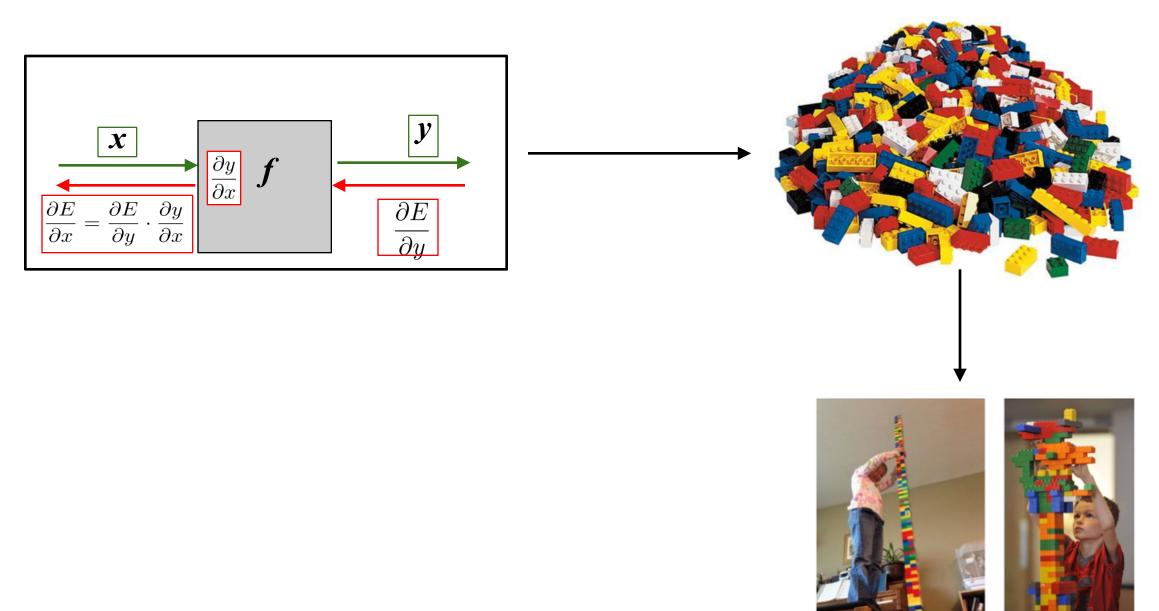
E.g., Cross-Entropy Loss for Multi-Class Classification



"Block View"



Building Deep Neural Nets



Training Neural Networks

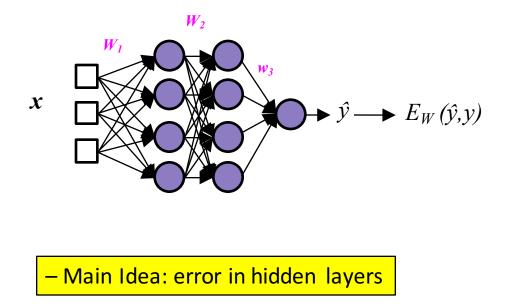
How do we learn the optimal weights W_L for our task??

• Stochastic Gradient descent:

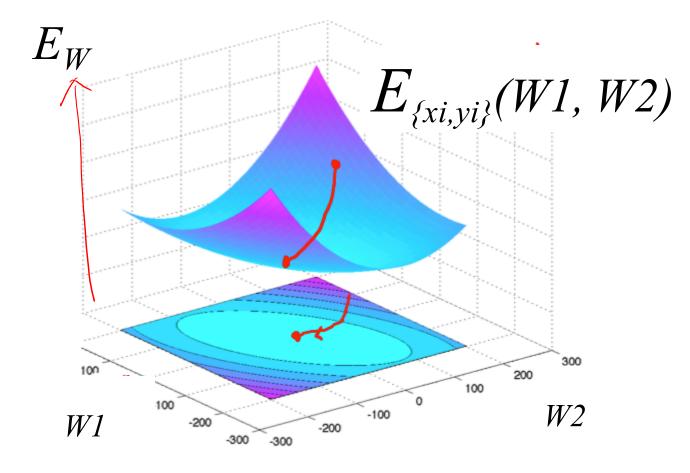
$$W_L^t = W_L^{t-1} - \eta \quad \frac{\partial E}{\partial W_L}$$

But how do we get gradients of lower layers?

- Backpropagation!
 - Repeated application of chain rule of calculus
 - o Locally minimize the objective
 - Requires all "blocks" of the network to be differentiable

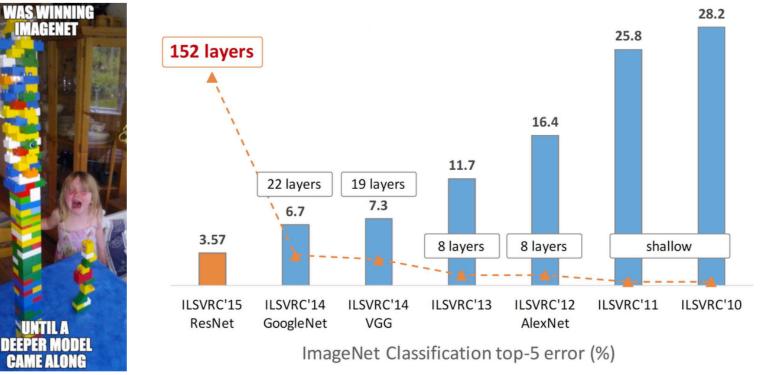


Illustrating Objective Loss Function (extremely simplified) and Gradient Descent (2D case)



The gradient points in the direction (in the variable space) of the greatest rate of increase of the function and its magnitude is the slope of the surface graph in that direction

Revolution of Depth



Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016.

43

Important **Block**: Convolutional Neural Networks (CNN)

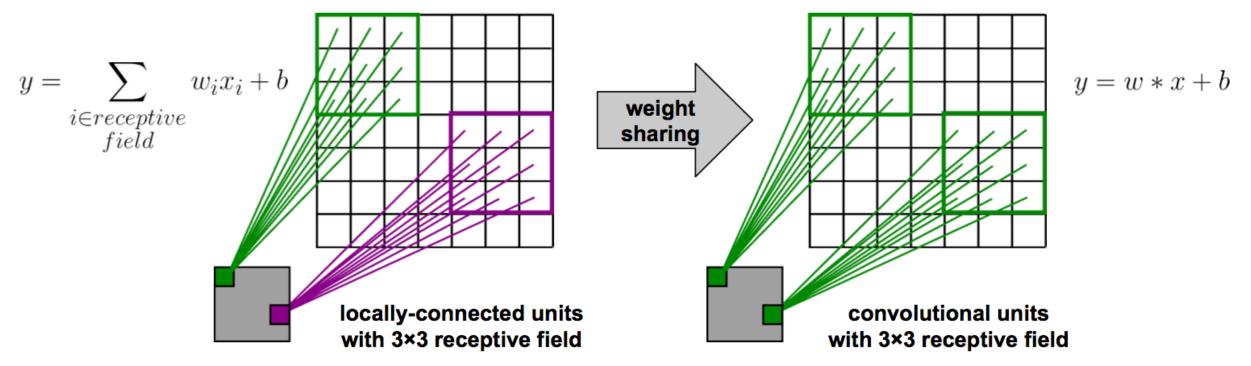
- Prof. Yann LeCun invented CNN in 1998
- First NN successfully trained with many layers

The bird occupies a local area and looks the same in different parts of an image. We should construct neural nets which exploit these properties!

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE 86(11): 2278–2324, 1998.

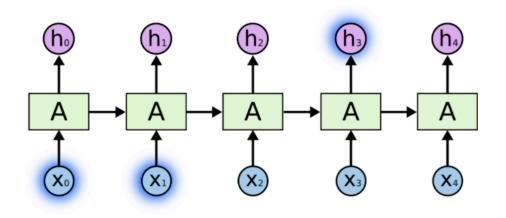
CNN models Locality and Translation Invariance

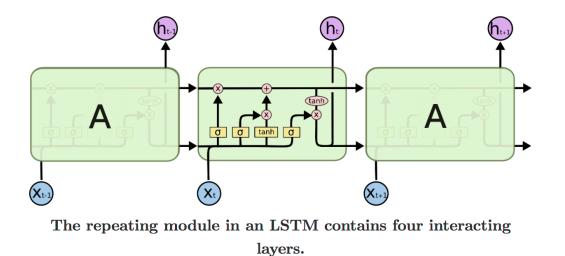
Make fully-connected layer locally-connected and sharing weight



Important **Block**: Recurrent Neural Networks (RNN)

 Prof. Schmidhuber invented "Long short-term memory" – Recurrent NN (LSTM-RNN) model in 1997

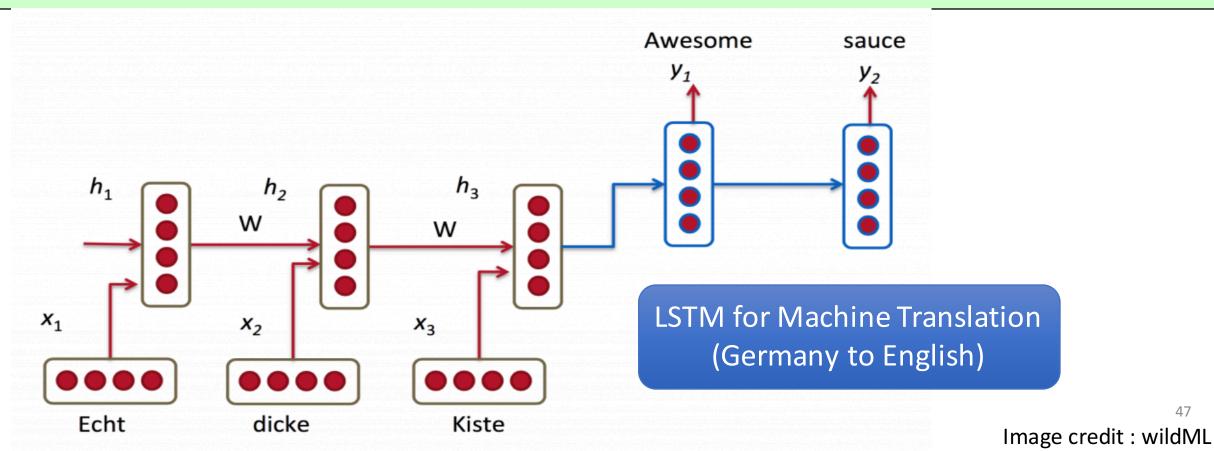




Sepp Hochreiter; Jürgen Schmidhuber (1997). "Long short-term memory". Neural Computation. 9 (8): 1735–1780.

RNN models dynamic temporal dependency

- Make fully-connected layer model each unit recurrently
- Units form a directed chain graph along a sequence
- Each unit uses recent history and current input in modeling



47

- Deep Learning
 - Why is this a breakthrough ?
 - Basics
 - History
 - A Few Recent trends

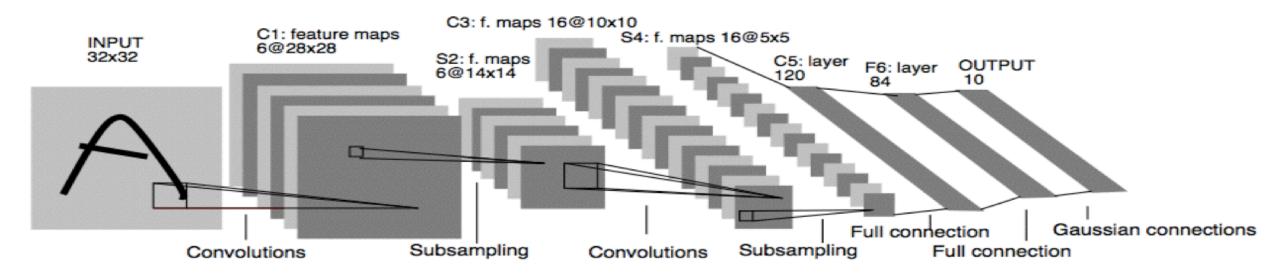
https://qdata.github.io/deep2Read/

Many classification models invented since late 80's

- Neural networks
- Boosting
- Support Vector Machine
- Maximum Entropy
- Random Forest
- •

Deep Learning (CNN) in the 90's

- Prof. Yann LeCun invented Convolutional Neural Networks (CNN) in 1998
- First NN successfully trained with many layers

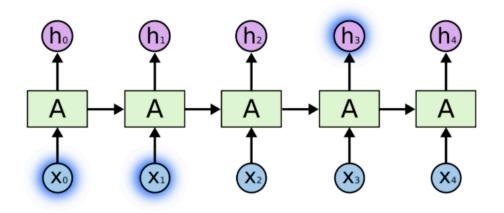


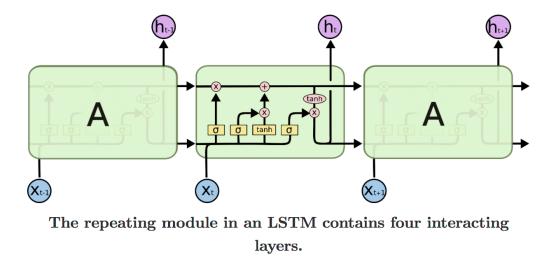
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE 86(11): 2278–2324, 1998.

Yanjun Qi / UVA CS

Deep Learning (RNN) in the 90's

 Prof. Schmidhuber invented "Long short-term memory" – Recurrent NN (LSTM-RNN) model in 1997





Sepp Hochreiter; Jürgen Schmidhuber (1997). "Long short-term memory". Neural Computation. 9 (8): 1735–1780.

Between ~2000 to ~2011 Machine Learning Field Interest

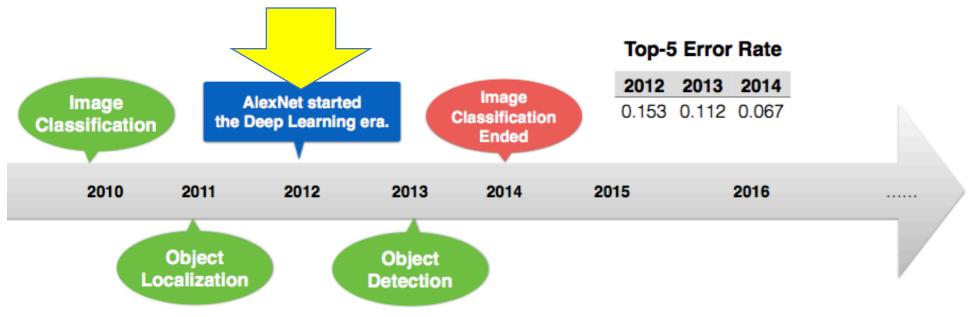
- Learning with Structures ! + Convex Formulation!
 - Kernel learning
 - Manifold Learning
 - Sparse Learning
 - Structured input-output learning ...
 - Graphical model
 - Transfer Learning
 - Semi-supervised
 - Matrix factorization

.

"Winter of Neural Networks" Since 90's to ~2011

- Non-convex
- Need a lot of tricks to play with
 - How many layers ?
 - How many hidden units per layer ?
 - What topology among layers ?
- Hard to perform theoretical analysis

Breakthrough in 2012 Large-Scale Visual Recognition Challenge (ImageNet) : Milestones in Recent Vision/AI Fields



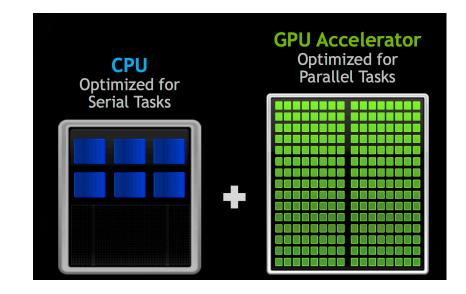
- 2013, Google Acquired Deep Neural Networks Company headed by Utoronto "Deep Learning" Professor Hinton
- 2013, Facebook Built New Artificial Intelligence Lab headed by NYU "Deep Learning" Professor LeCun
- 2016, Google's DeepMind defeats legendary Go player Lee Se-dol in historic victory / 2017 Alpha Zero ^{8/29/18} Yanjun Qi / UVA CS 54

Reason: Plenty of (Labeled) Data

- Text: trillions of words of English + other languages
- Visual: billions of images and videos
- Audio: thousands of hours of speech per day
- User activity: queries, user page clicks, map requests, etc,
- Knowledge graph: billions of labeled relational triplets

•

Reason: Advanced Computer Architecture that fits DNNs



http://www.nvidia.com/content/events/geoInt2015/LBrown_DL.pdf

	Neural Networks	GPUs
Inherently Parallel	\sim	\checkmark
Matrix Operations	\checkmark	\checkmark
FLOPS	\checkmark	\checkmark

- smaller footprint
- lower power

Some Recent Trends

https://qdata.github.io/deep2Read/

- 1. Autoencoder / layer-wise training
- 2. CNN / Residual / Dynamic parameter
- 3. RNN / Attention / Seq2Seq, ...
- 4. Neural Architecture with explicit Memory
- 5. NTM 4program induction / sequential decisions
- 6. Learning to optimize / Learning DNN architectures
- 7. Learning to learn / meta-learning/ few-shots
- 8. DNN on graphs / trees / sets
- 9. Deep Generative models, e.g., autoregressive
- 10. Generative Adversarial Networks (GAN)
- 11. Deep reinforcement learning
- 12. Validate / Evade / Test / Understand / Verify DNNs

https://qdata.github.io/deep2Read/

Inputs and Outputs

Architectures:

Losses

Learned Models

Yanjun Qi / UVA CS

Adapt from From NIPS 2017 DL Trend Tutorial

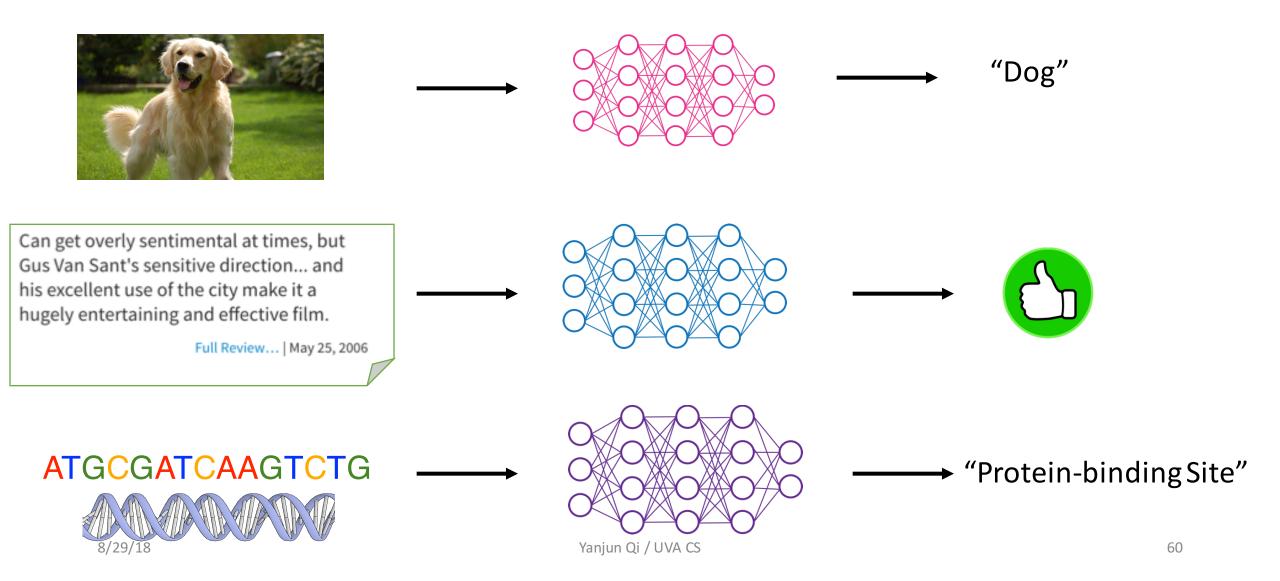
Making Deep Learning Understandable for Analyzing Sequential Data about Gene Regulation Dr. Yanjun Qi

Dr. Yanjun Qi Department of Computer Science University of Virginia

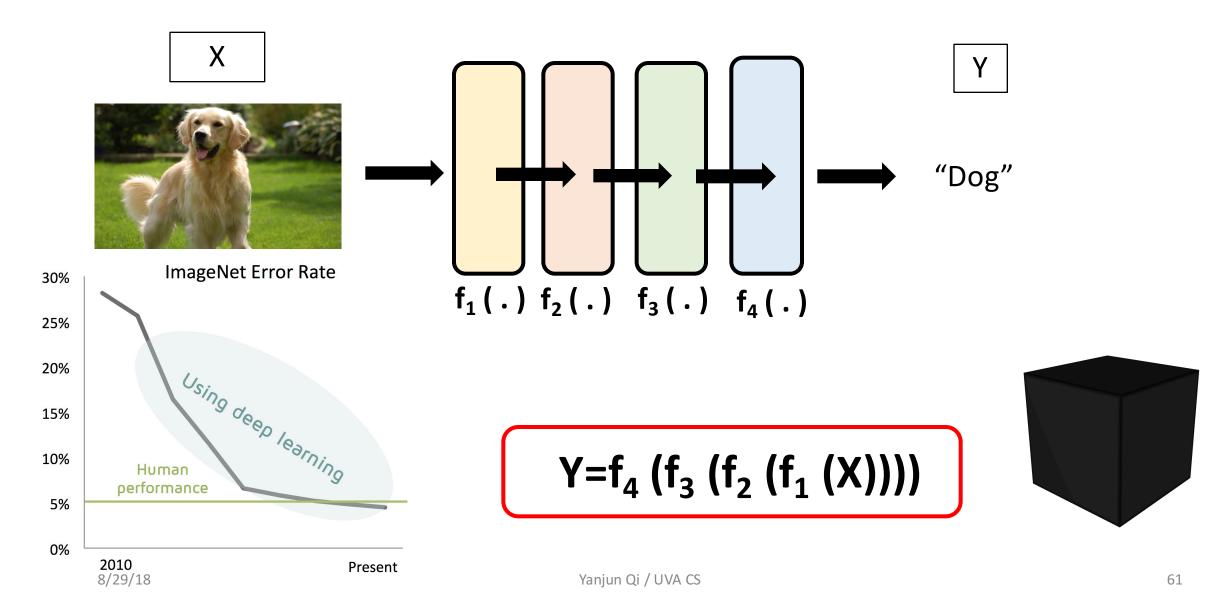
Tutorial @ ACM BCB-2018

BREAK 5mins ->Second Half

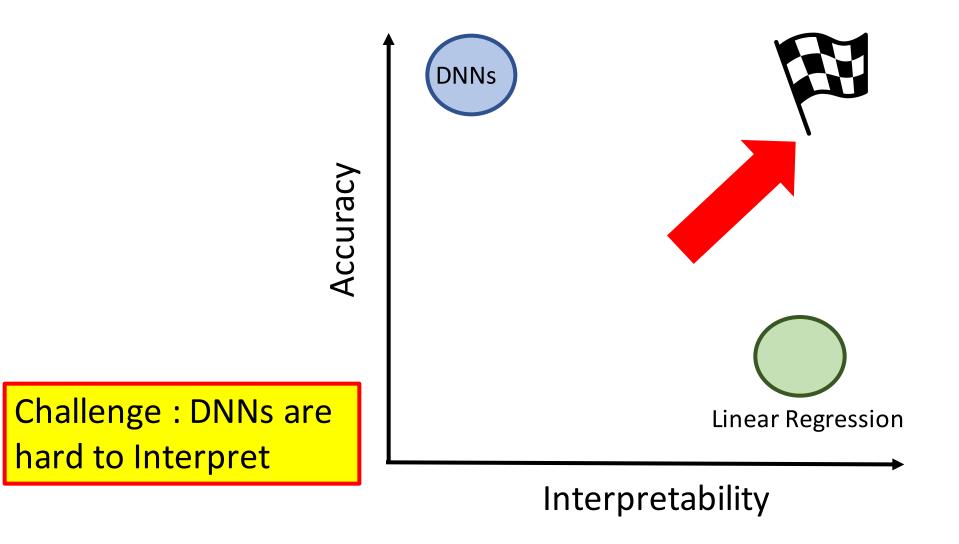
State-of-the-art: Deep Neural Networks (DNNs)



Challenge : DNNs are hard to Interpret



Our Goal: Interpretable DNNs



Today

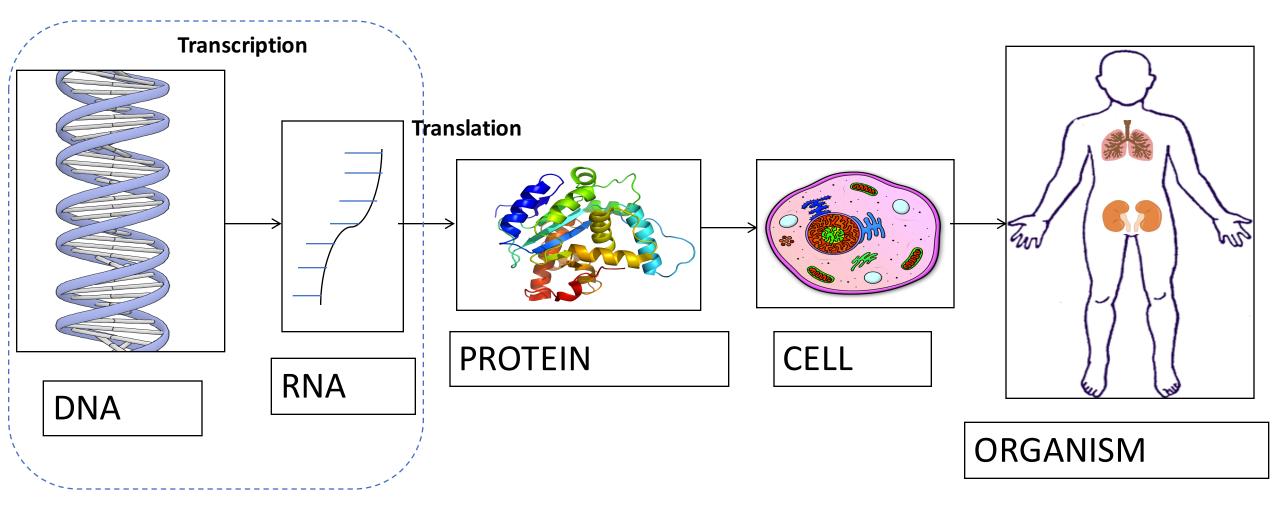
- Machine Learning: a quick review
- Deep Learning: a quick review
- Background Biology: a quick review
- Deep Learning for analyzing Sequential Data about Regulation:
 - DeepChrome
 - AttentiveChrome
 - DeepMotif

https://www.deepchrome.org

https://qdata.github.io/deep2Read/

8/29/18

Biology in a Slide



DNA and Diseases

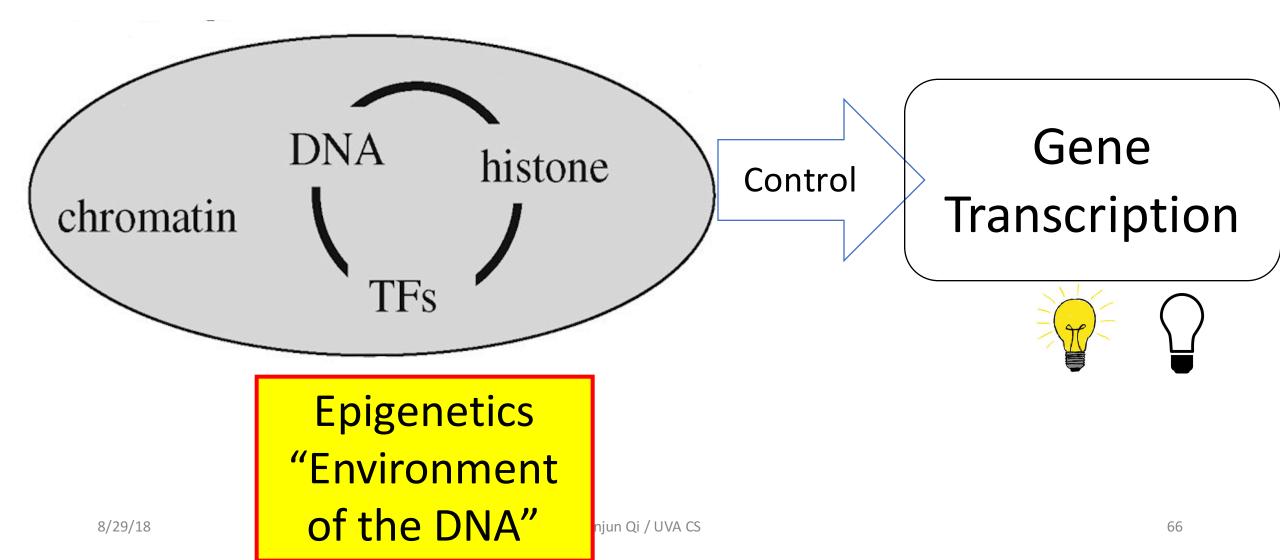
- Down Syndrome
- Parkinson's Disease

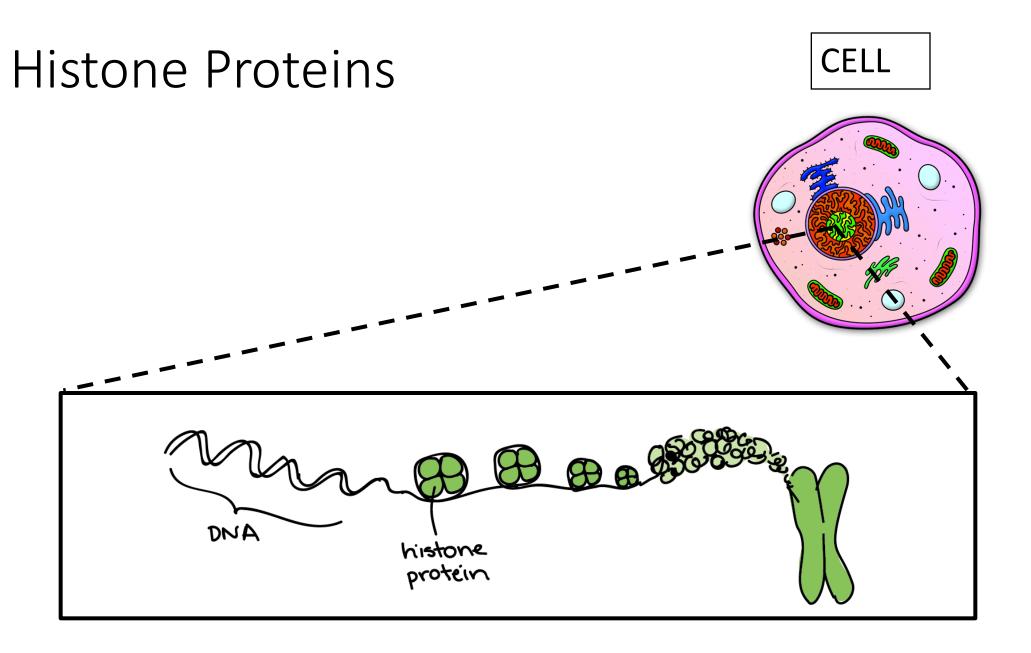
Autism

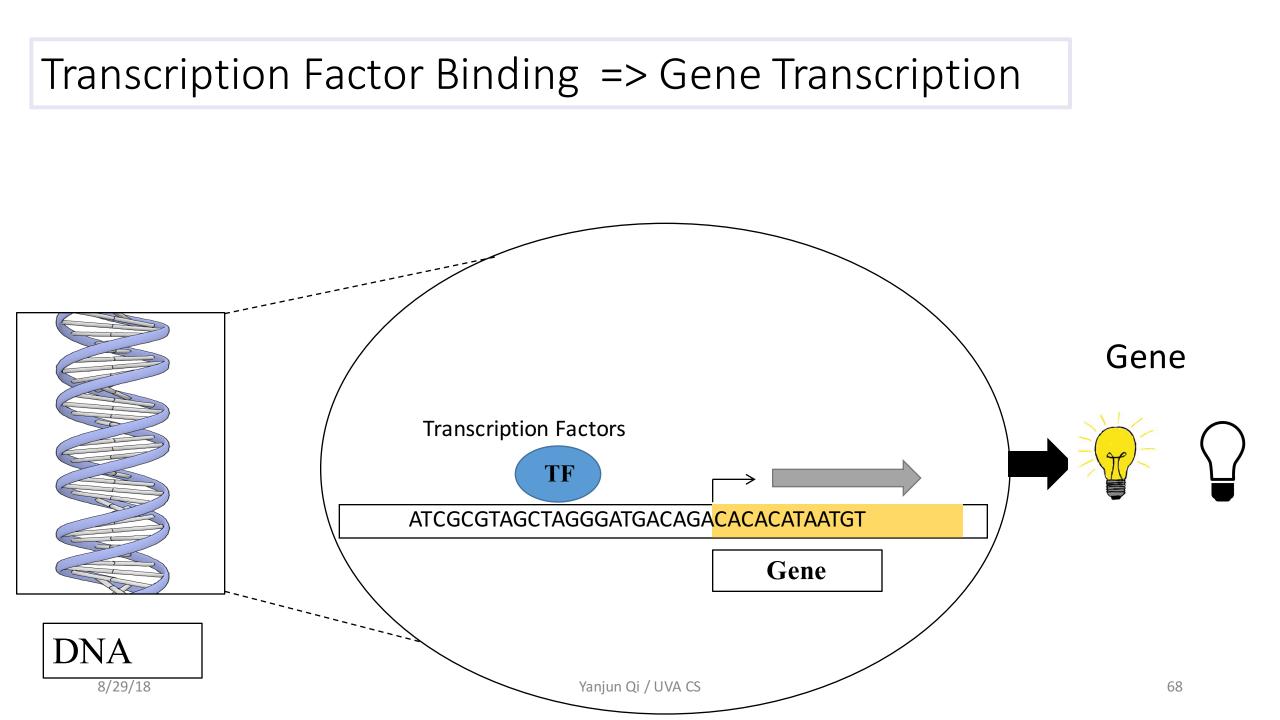
- Muscular Atrophy
- Sickle Cell Disease

• • • • • • • • • •

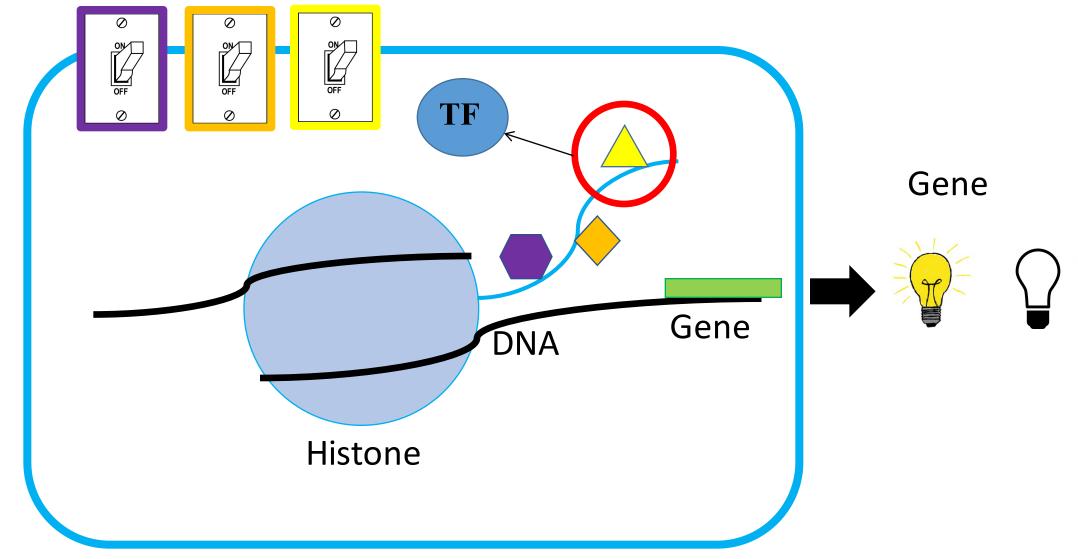
Chromatin





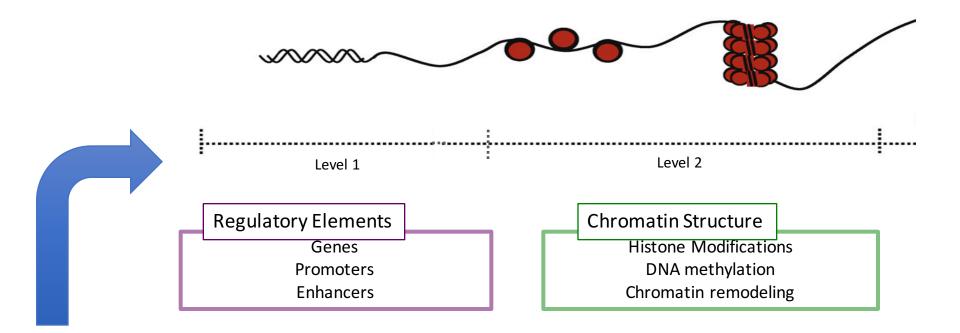


Histone Modifications (HM)



Genome Organization and Gene Regulation

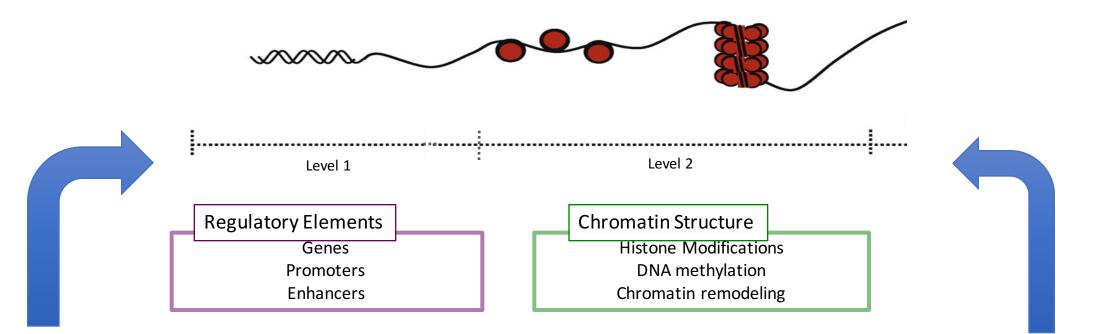




ENCODE Project (2003-Present)

Describe the functional elements encoded in human DNA



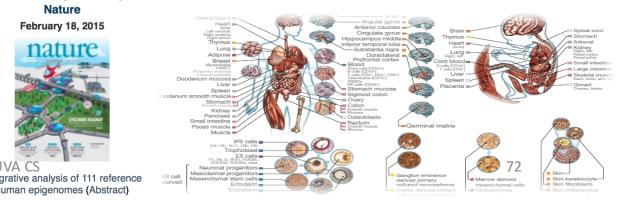


ENCODE Project (2003-)

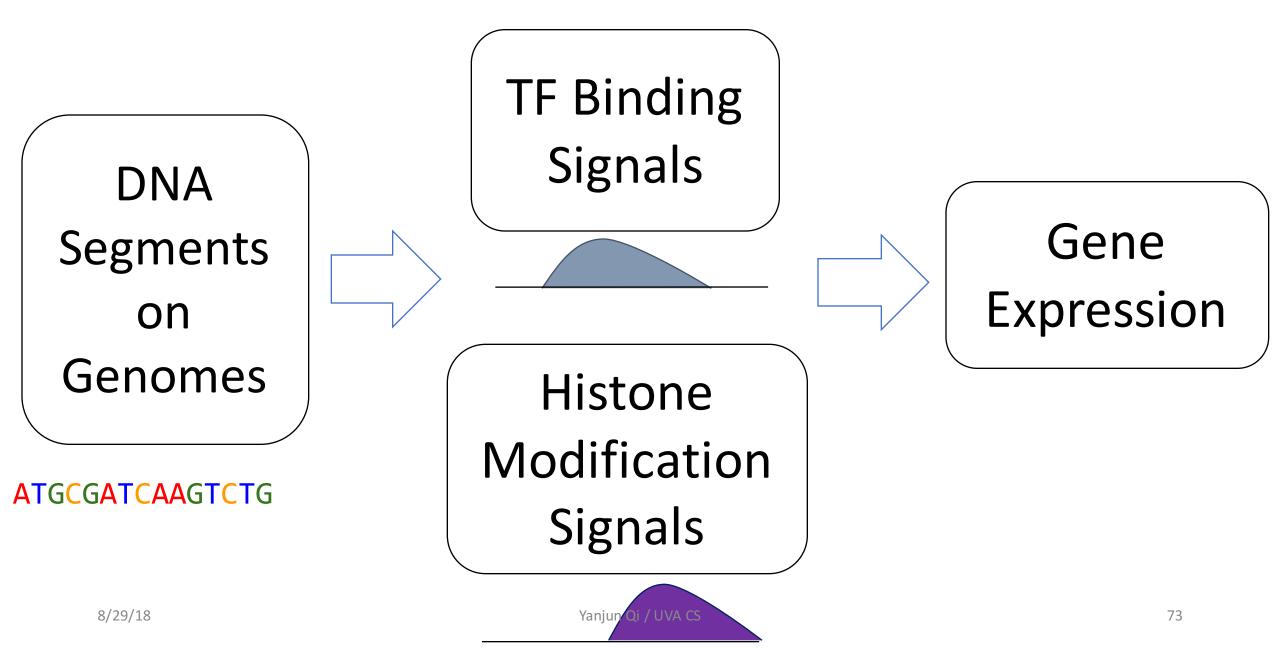
Describe the functional elements encoded in human DNA

Roadmap Epigenetics Project (REMC, 2008-)

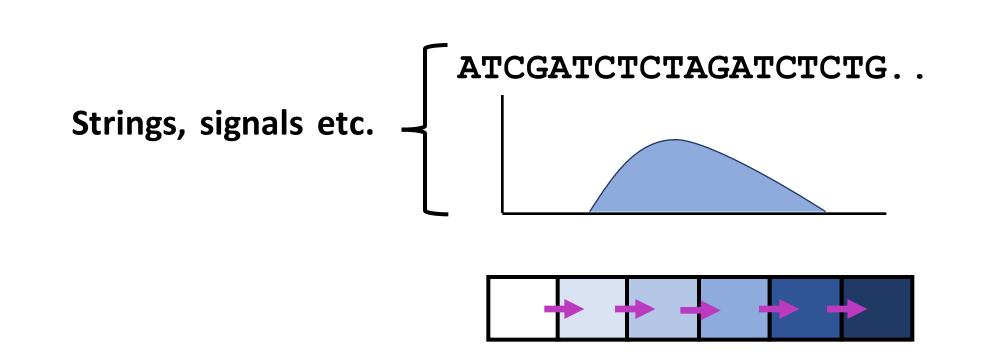
To produce a public resource of epigenomic maps for stem cells and primary ex vivo tissues selected to represent the normal counterparts of tissues and organ systems frequently involved in human disease.



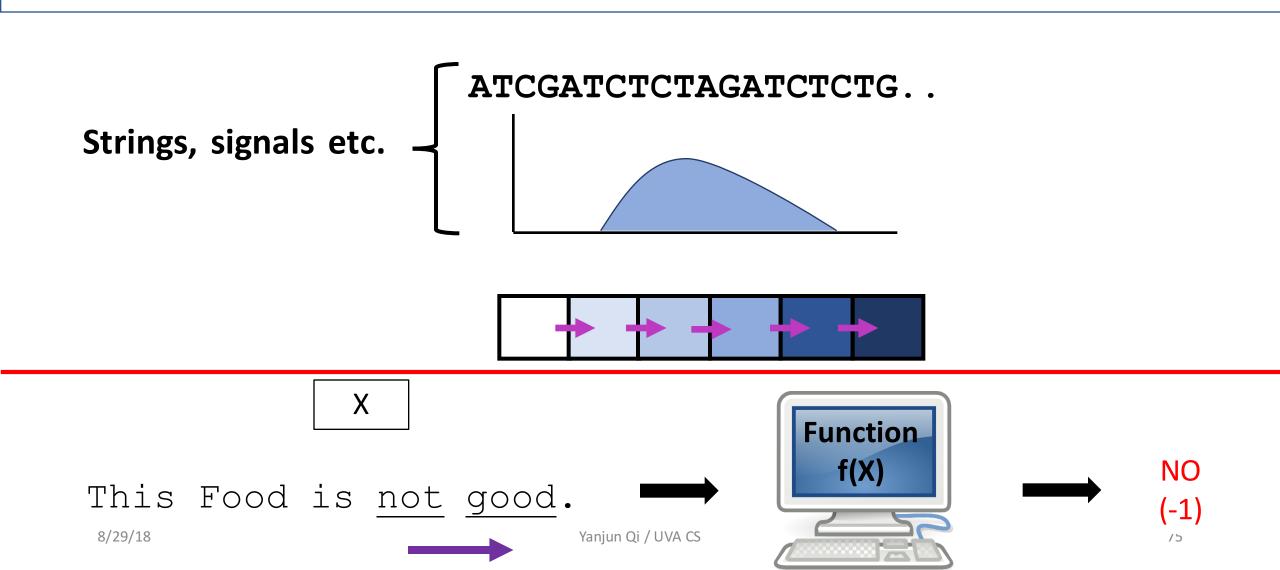
Many Important Data-Driven Computational Tasks



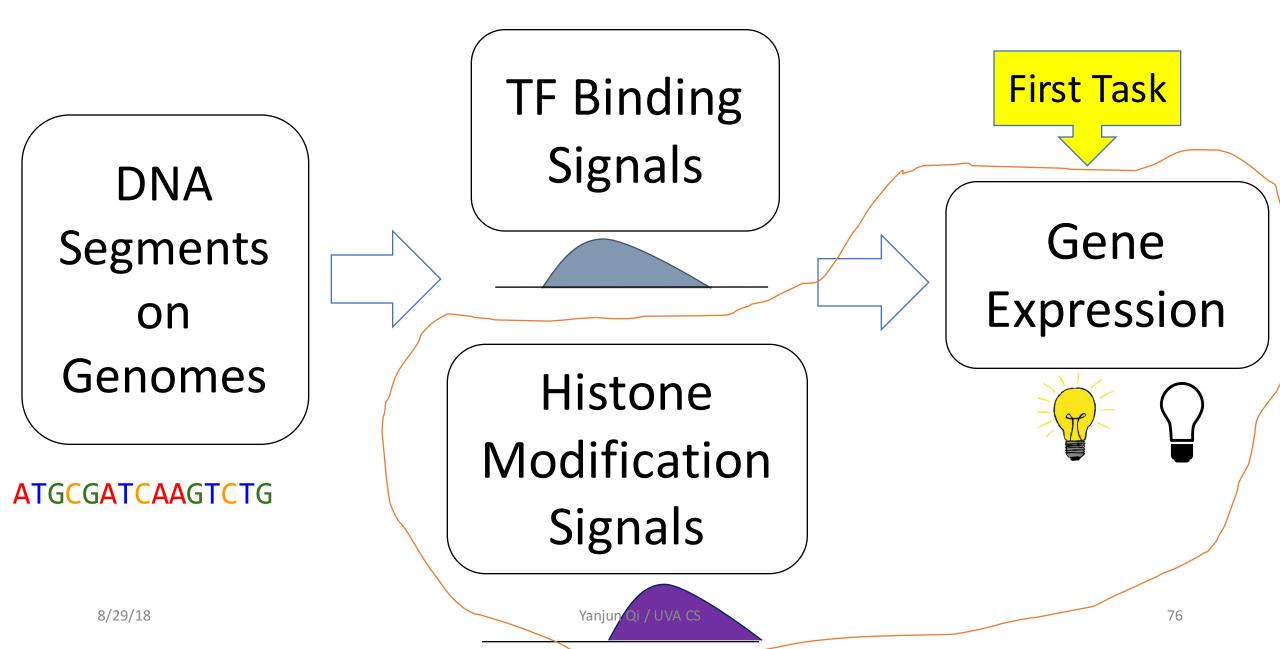
Sequential Input (X)



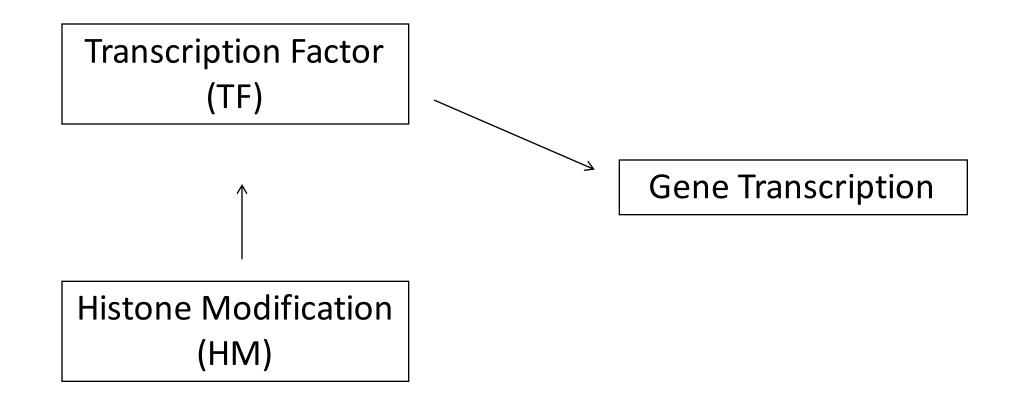
Sequential Input (X)



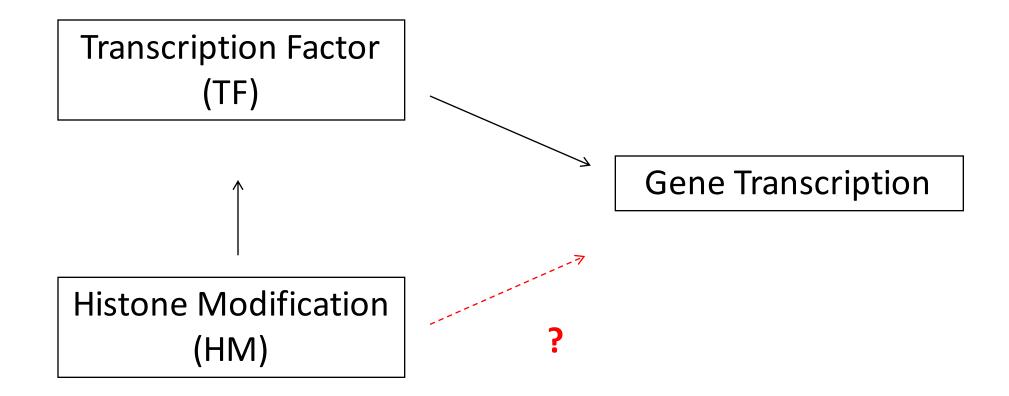
Many Important Data-Driven Computational Tasks



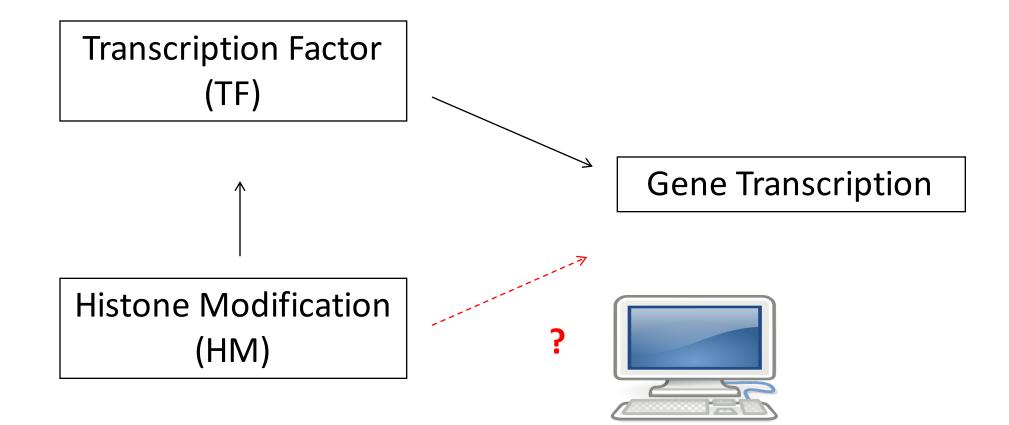
Histone Modification and Gene Transcription



Histone Modification and Gene Transcription



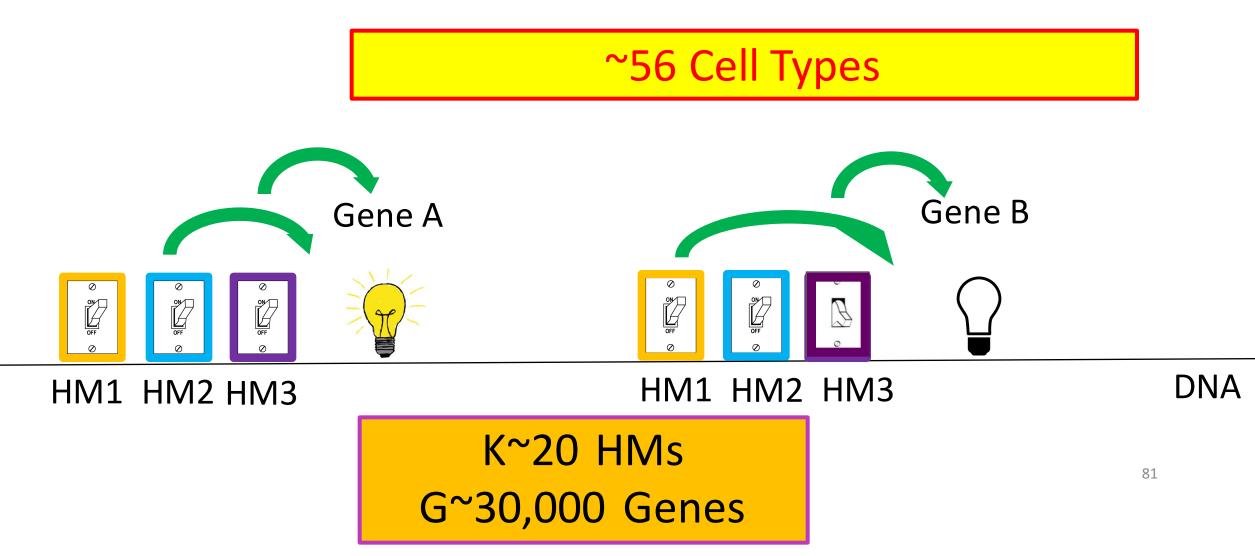
Histone Modification and Gene Transcription

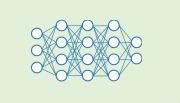


Why Studying [HM => Gene Expression] ?

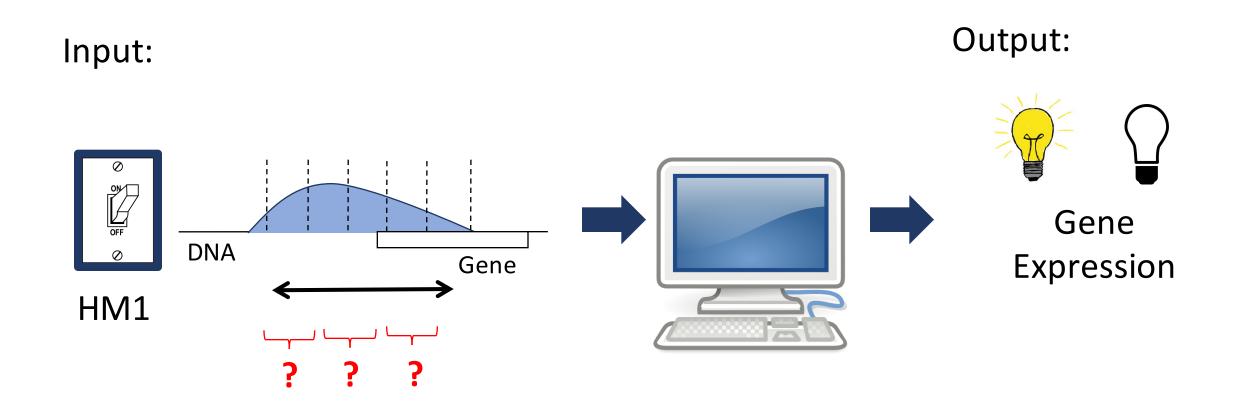
- Epigenomics:
 - Study of chemical changes in DNA and histones (without altering DNA sequence)
 - Inheritable and involved in regulating gene expression, development, tissue differentiation and suppression ...
- Modification in DNA/histones (changes in chromatin structure and function)
 - => influence how easily DNA can be accessed by TF
- Epigenome is dynamic
 - Can be altered by environmental conditions
 - Unlike genetic mutations, chromatin changes such as histone modifications are potentially reversible => Epigenome Drug for Cancer Cells?

Study how HMs influence genes?

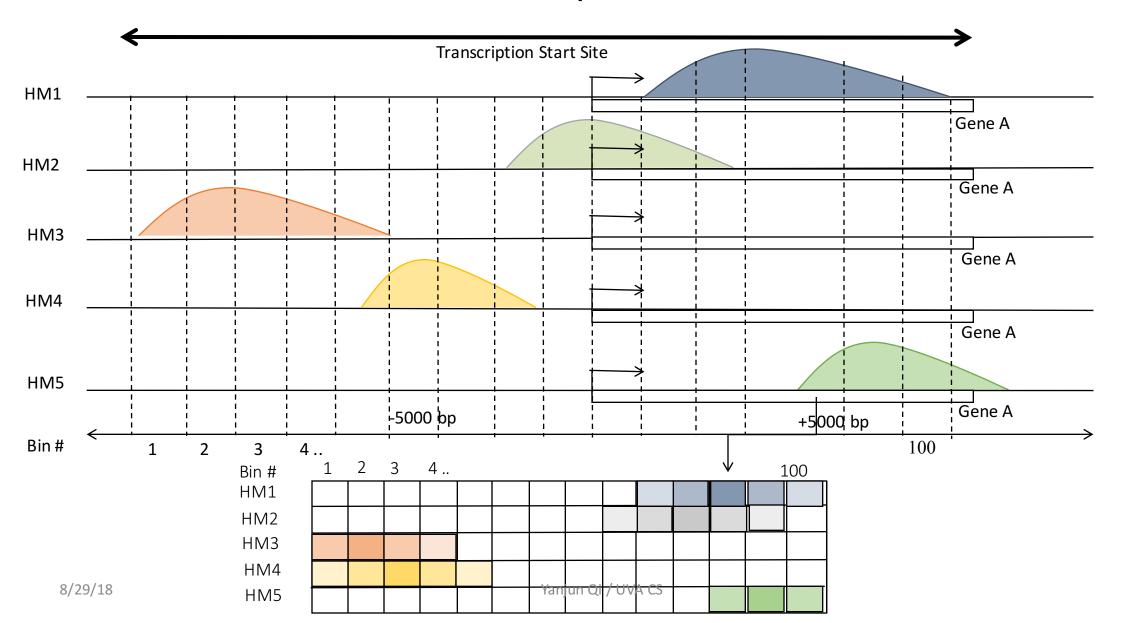


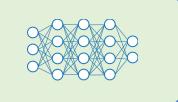


Task Formulation

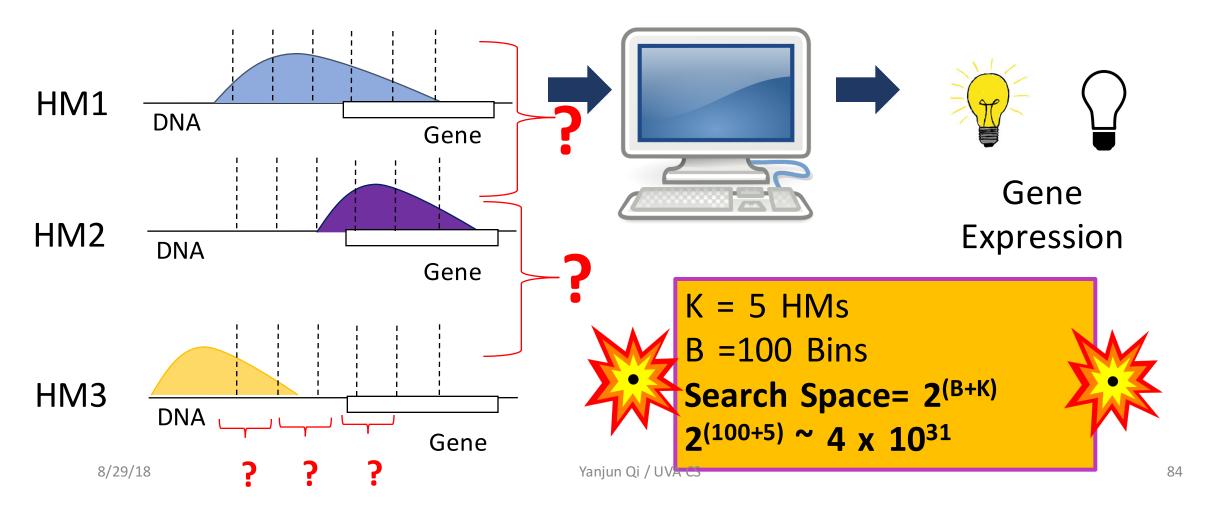


Input

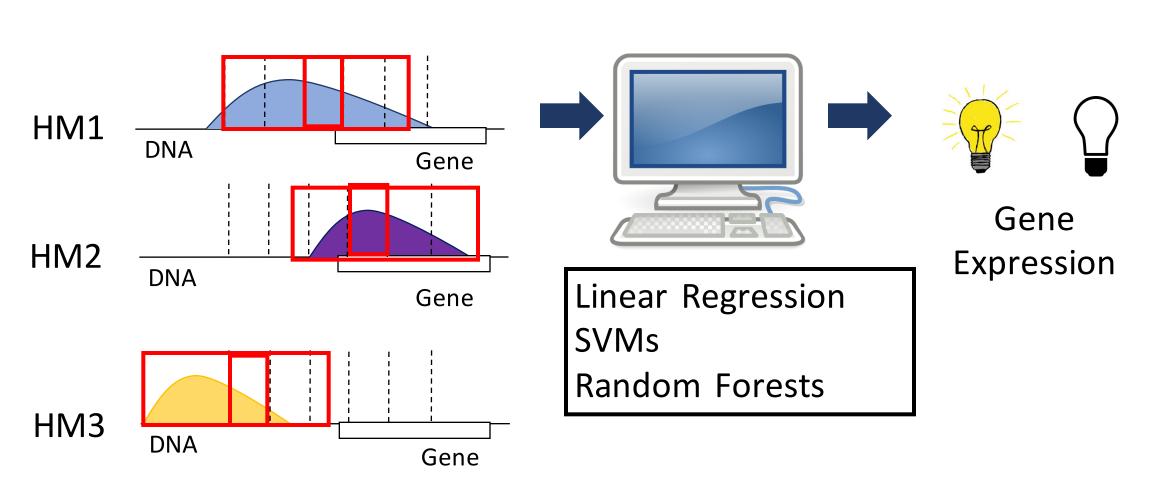




Computational Challenge

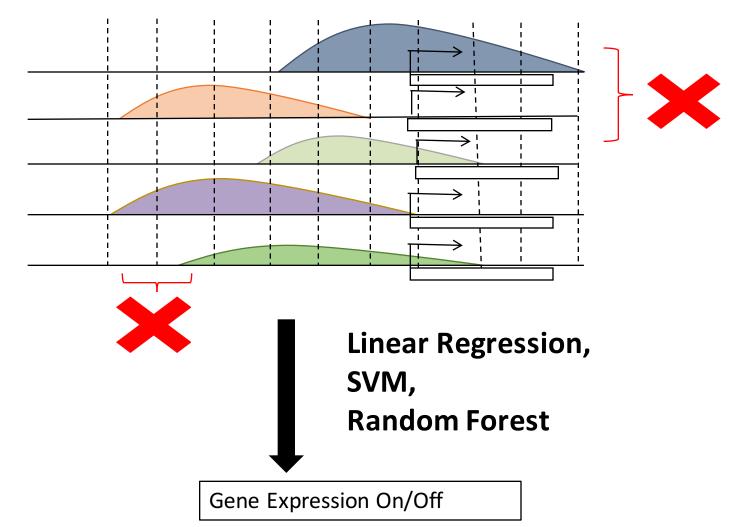


Related Work



[1] Karli´c, R. et al, Histone modification levels are predictive for gene expression. Proceedings of the National Academy of Sciences (2010)
 [2] Cheng, C. et al, A statistical framework for modeling gene expression using chromatin features and application to modENCODE datasets. Genome Biology (2011)
 [3] Dong, X. et al, Modeling gene expression using chromatin features in various cellular contexts. Genome Biology (2012)

Drawback of Related Works



[1] Karli´c, R. et al, Histone modification levels are predictive for gene expression. Proceedings of the National Academy of Sciences (2010)
 [2] Cheng, C. et al, A statistical framework for modeling gene expression using chromatin features and application to modENCODE datasets. Genome Biology (2011)

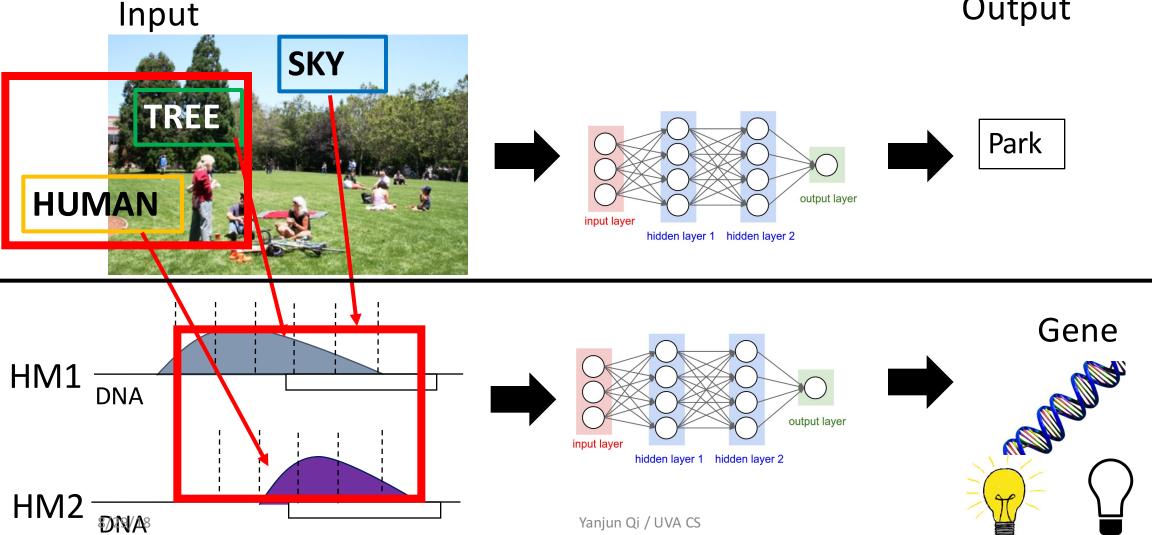
[3] Dong, X. et al, Modeling gene expression using chromatin features in various cellular contexts. Genome Biology (2012)

First Solution : CNN

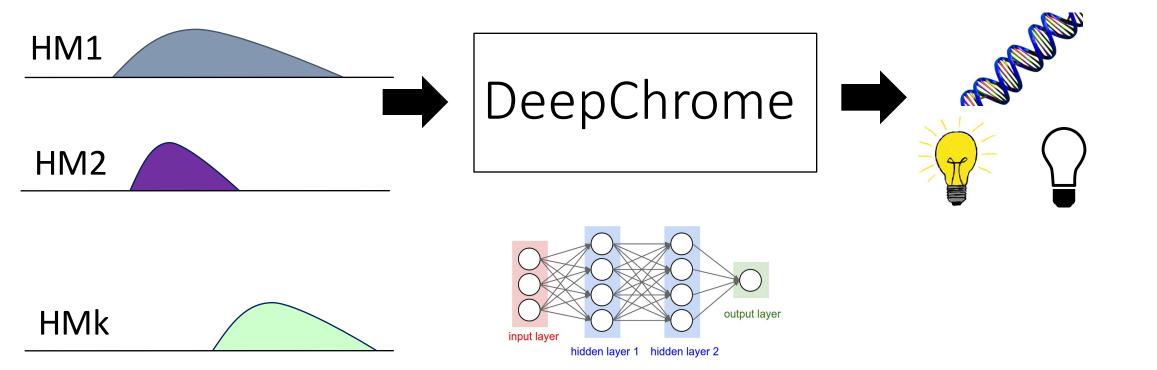
HM signals occupy a local region and look similar in different parts?

Output

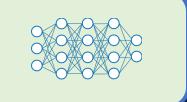
87



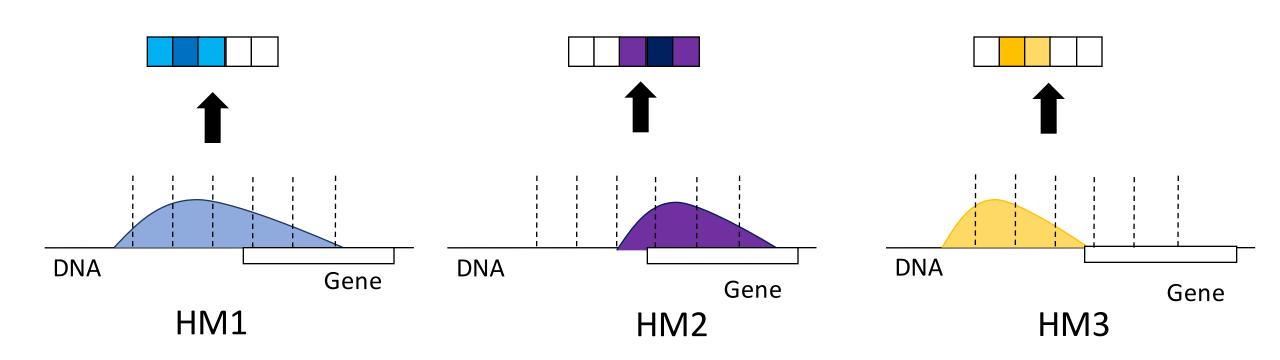
First Solution: DeepChrome : CNN

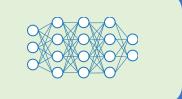


R. Singh, et al. "Deep-learning for predicting gene expression from histone modifications". *Bioinformatics*. (ECCB) (2016)



Input (X)



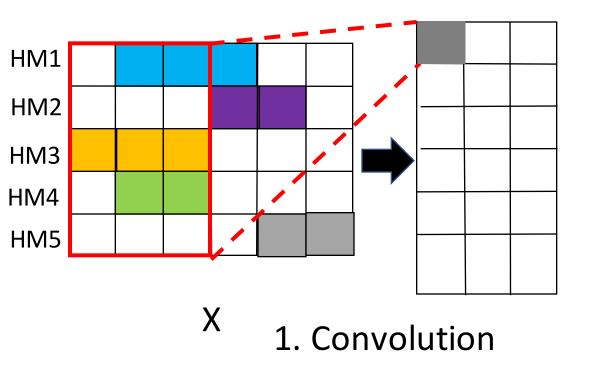


Output (Y) Labels

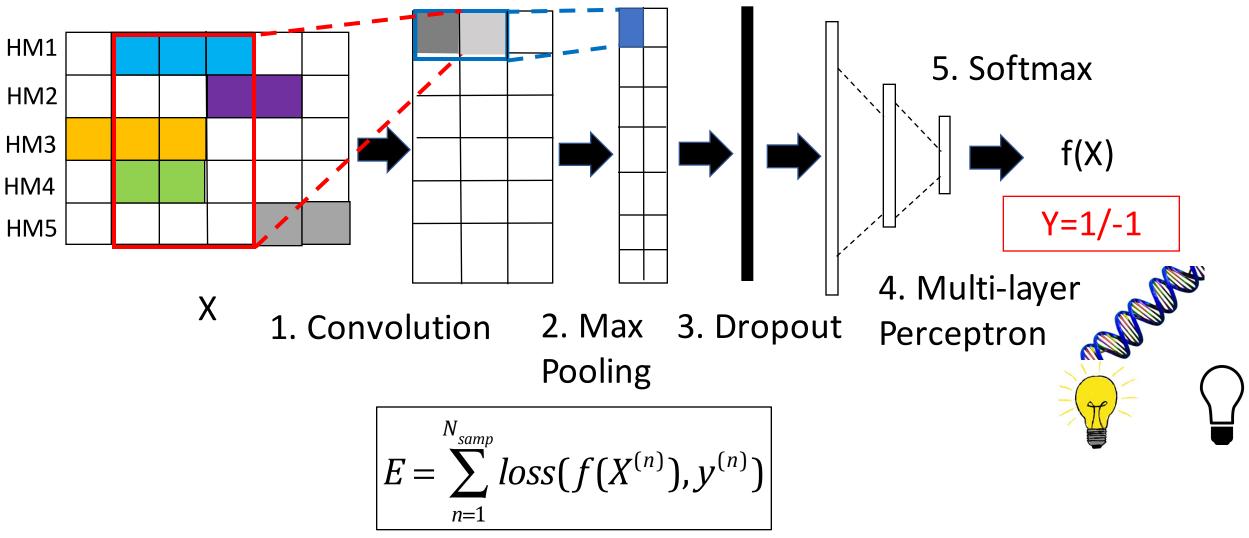
Genes	Gene Expression (RPKM)	Y Labels	
RUNX1	1.296	0	
SMAD2	14.902	1	
MYC	3.805	0	
PAX5	15.066	1	

Threshold = 10.245 (Median)

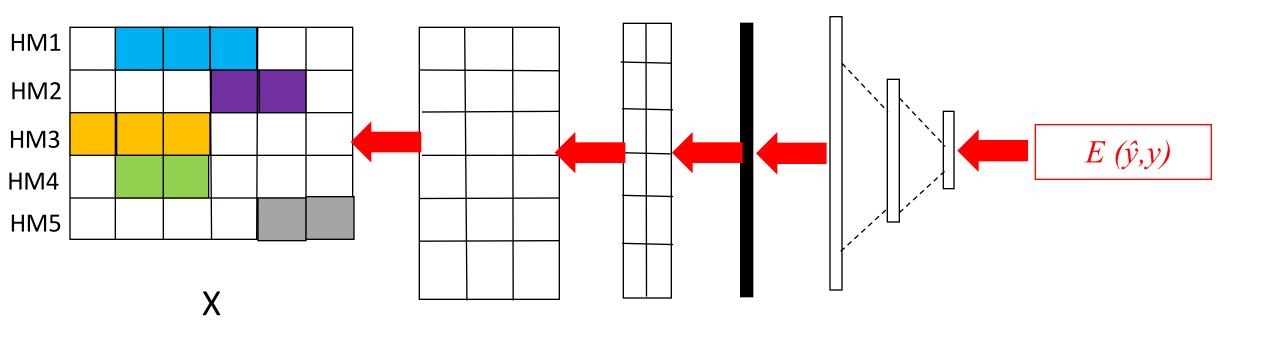
DeepChrome: Convolutional Neural Network (CNN)



DeepChrome: Convolutional Neural Network (CNN)



DeepChrome: Convolutional Neural Network (CNN)



Back-propagation: $\Theta \leftarrow \Theta - \eta \frac{\partial E}{\partial \Theta}$

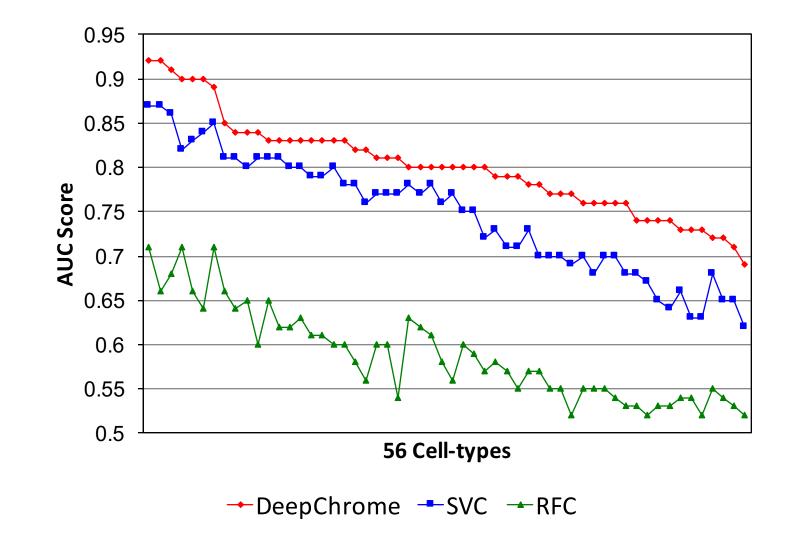
Experimental Setup

- Roadmap Epigenetics Project (REMC)
- Cell-types: 56
- Input (HM): ChIP-Seq Maps / 5 Tier-1 HMs

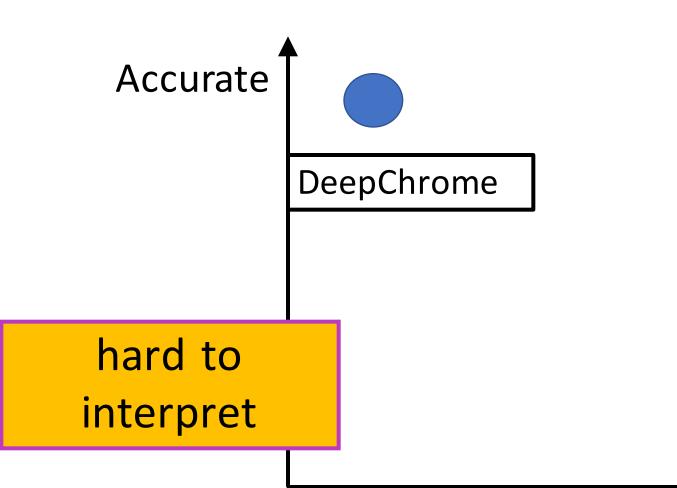
Histone Mark	Functional Category	
H3K27me3	Repressor	
H3K36me3	Structural Promoter	
H3K4me1	Distal Promoter	
H3K4me3	Promoter	
H3K9me3	Repressor	

- Output (Gene Expression): Discretized RNA-Seq
- Baselines: Support Vector Classifier (SVC) and Random Forest Classifier (RFC)

Results: Accuracy



https://www.deepchrome.org

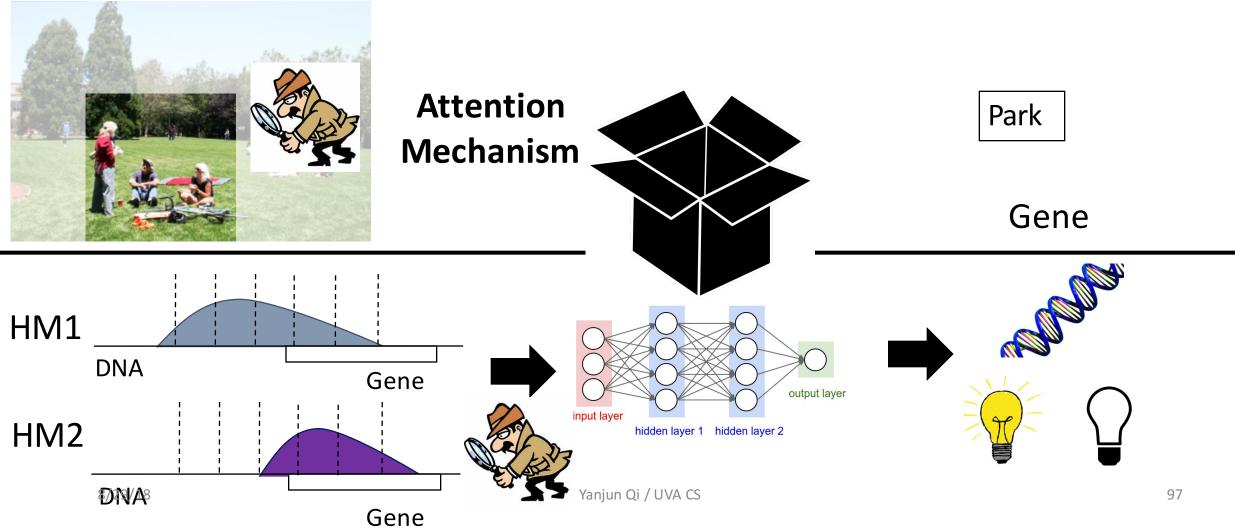


Understandable

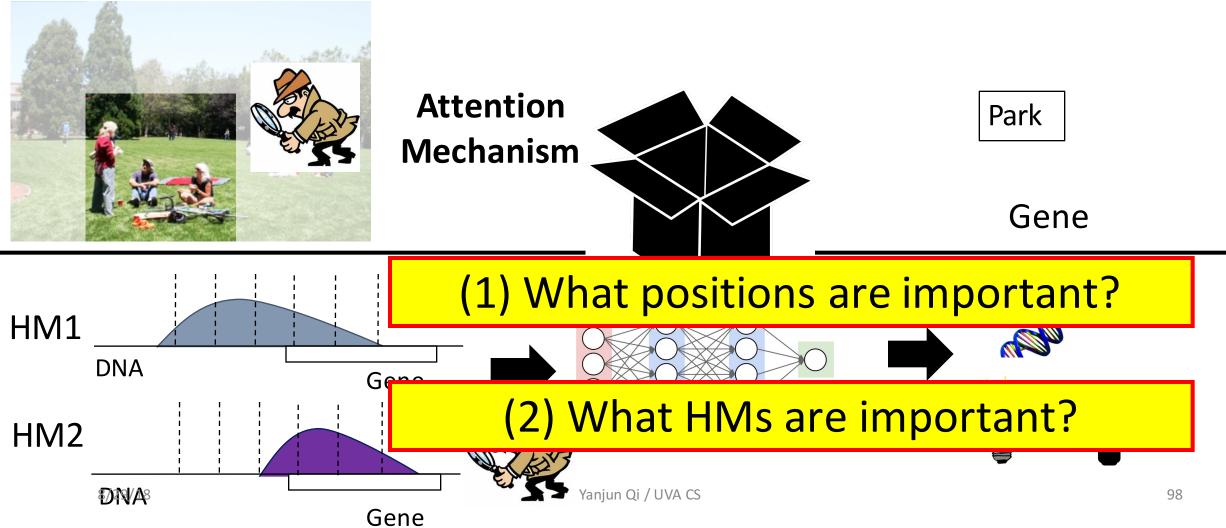
R. Singh/et al. Deep-learning for predicting gene expression from histone modifications". Bioinformatics. (2016) 96

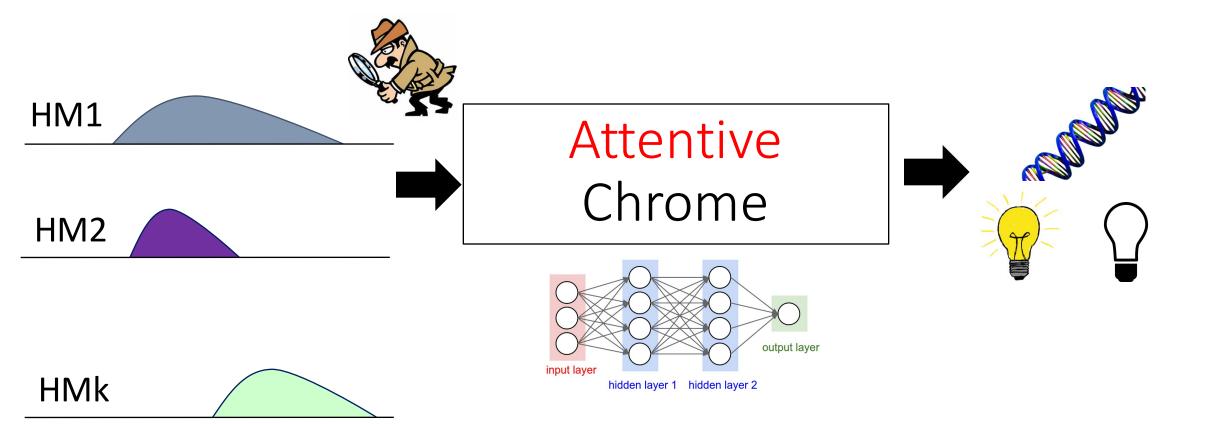
Solution: Interpretability by Hierarchical Attention

Input



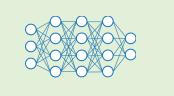
Solution: Interpretability by Hierarchical Attention





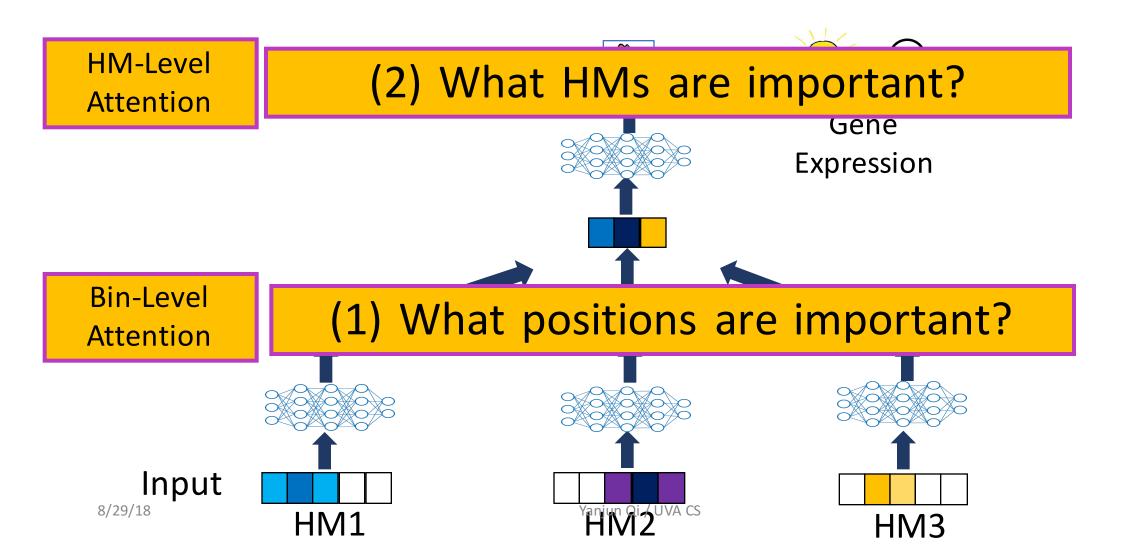
R. Singh, et al. "Attend and Predict: Understanding Gene Regulation by Selective Attention on Chromatin". NIPS (2017)

99

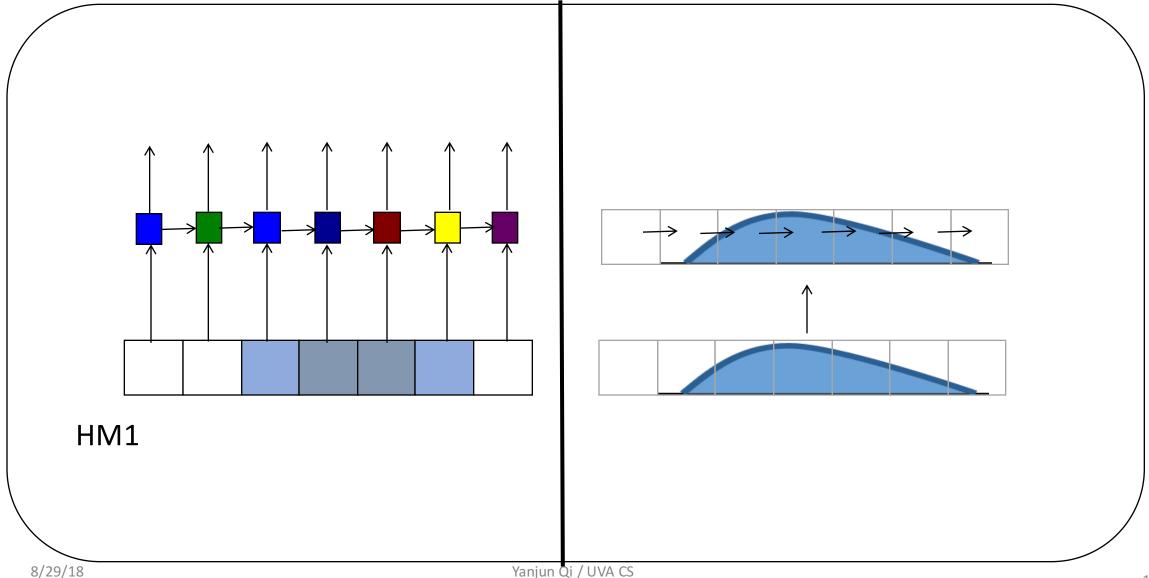


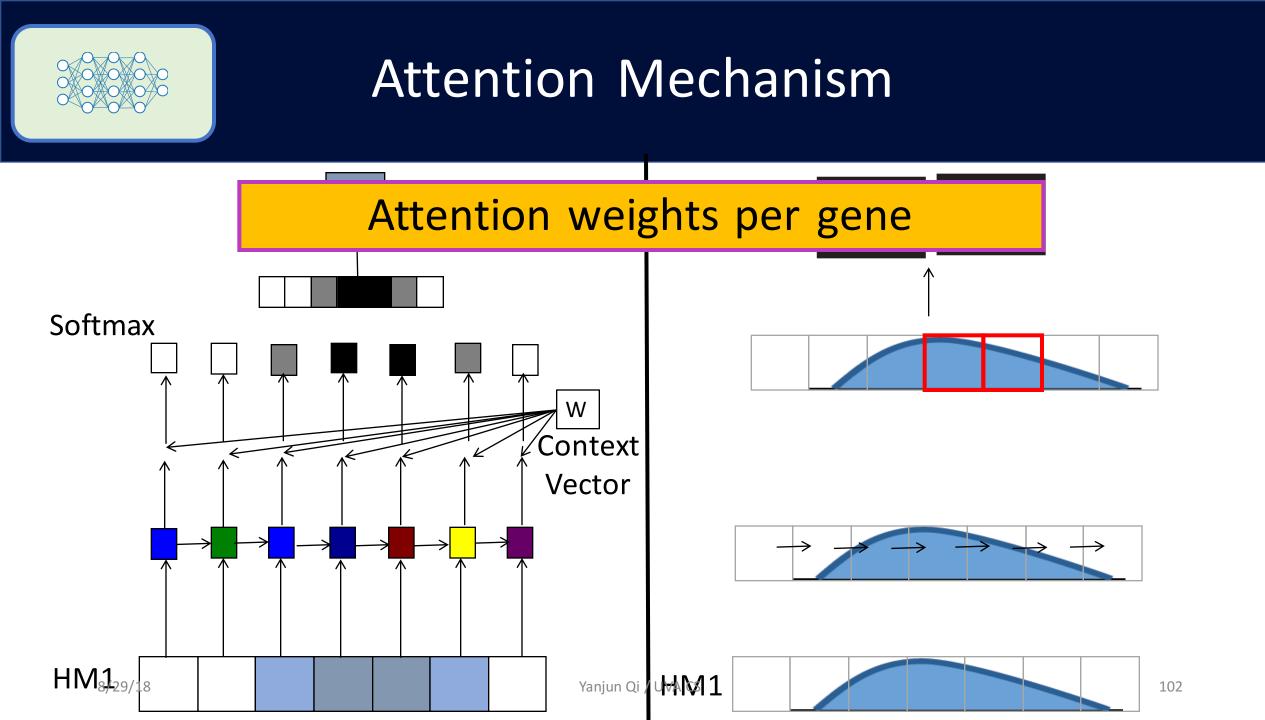
AttentiveChrome

100

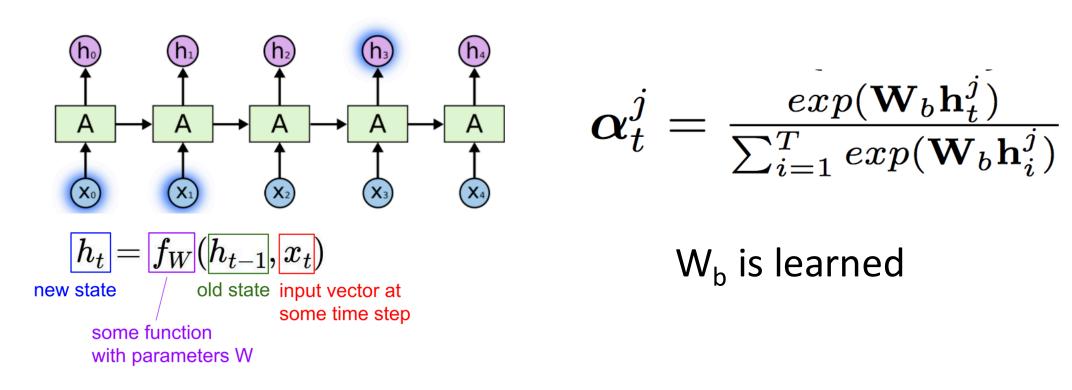


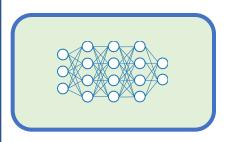
Multiple Recurrent Neural Networks (Hierarchical RNNs) to model each HM and the Combination of all HMs : for example on HM1



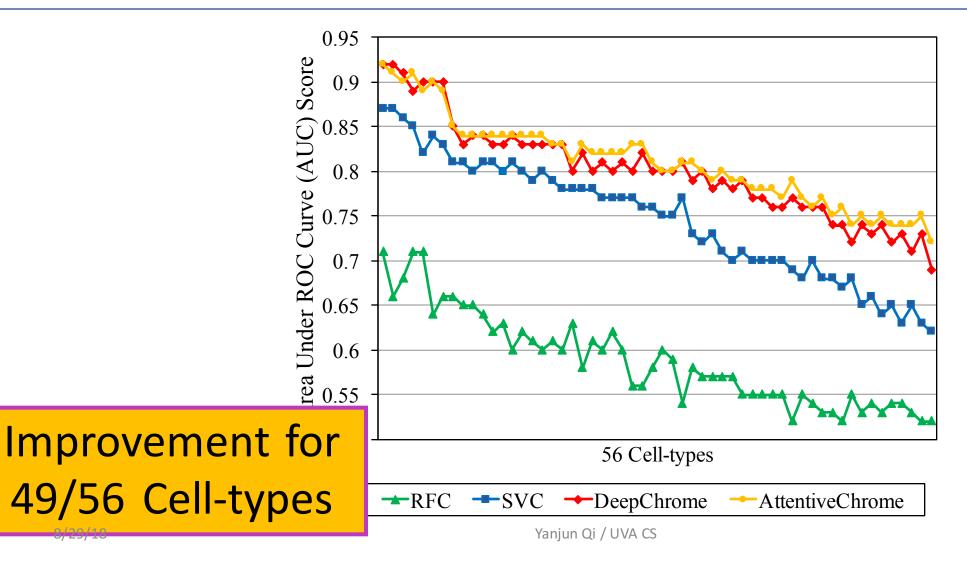


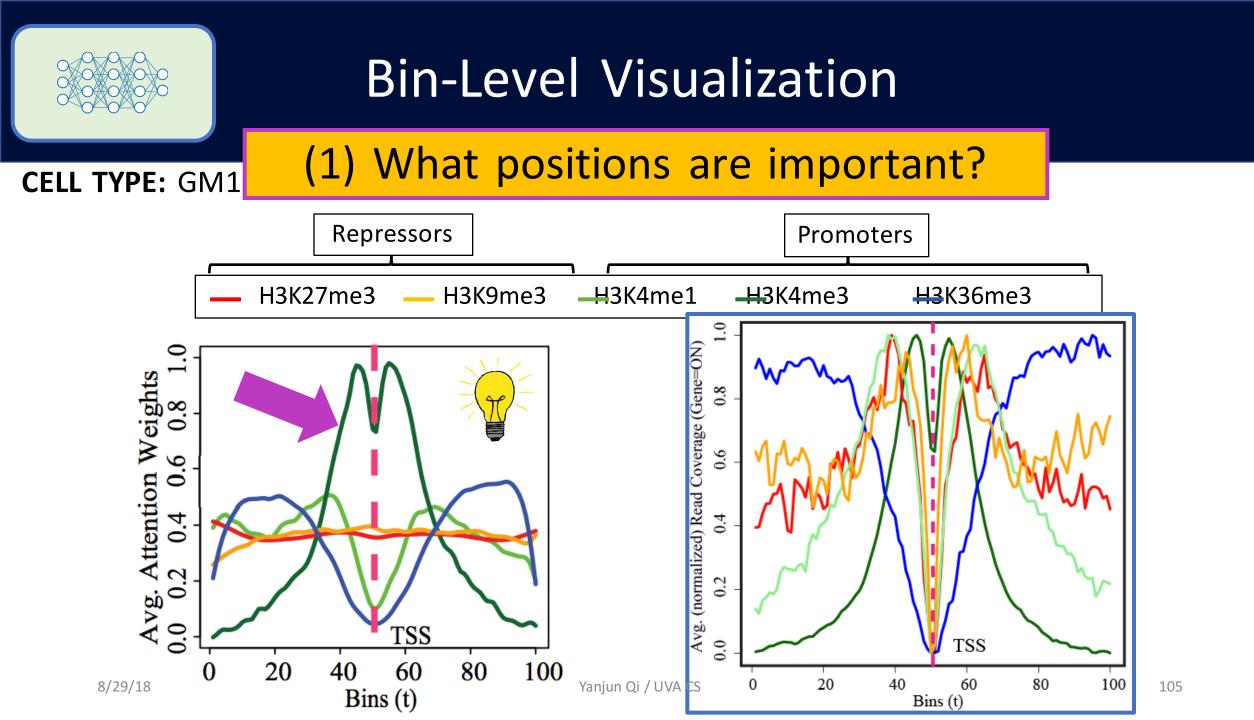
Using Attention to Select RNN per-unit outputs

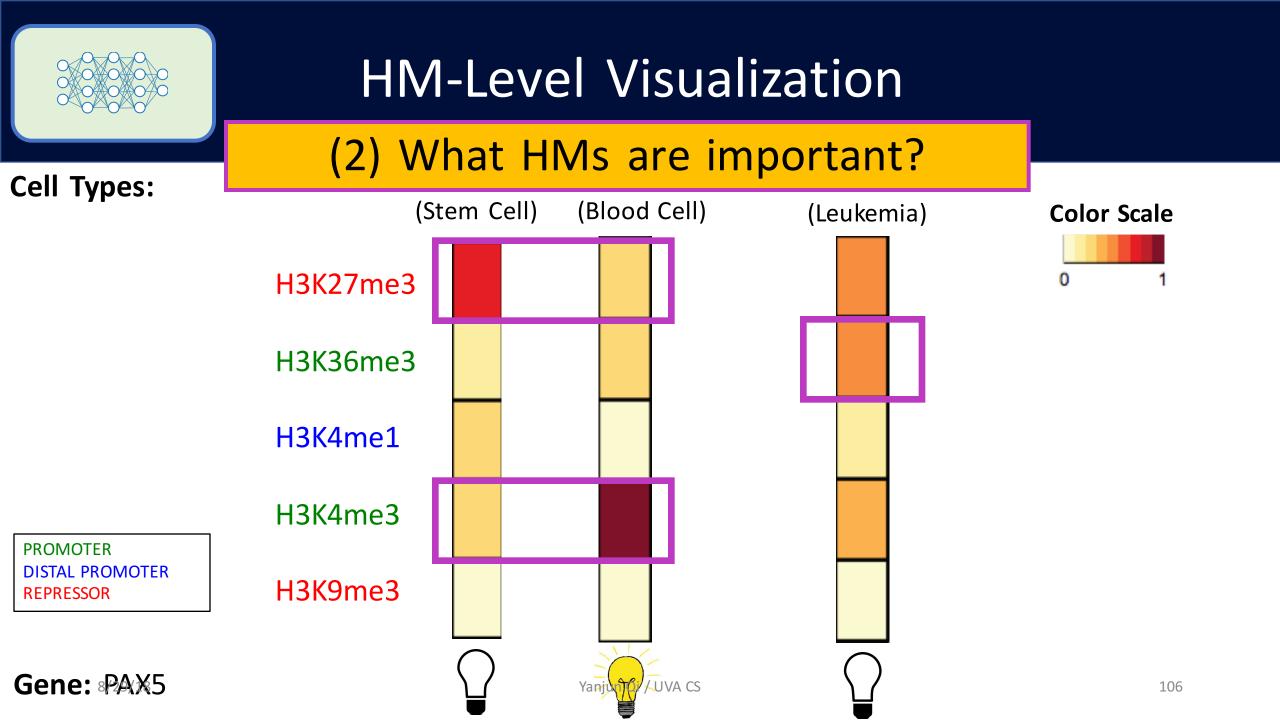




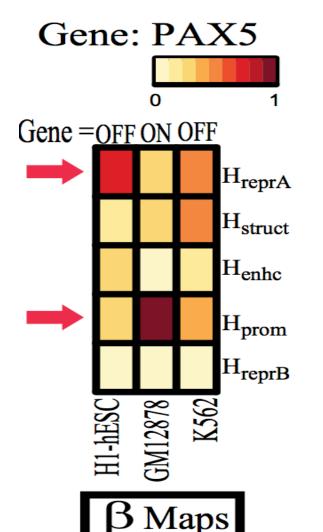
Prediction







Results: HM level attention



An important differentially regulated gene (PAX5) across three blood lineage cell types:
 H1-hESC (stem cell),
 GM12878 (blood cell),
 K562 (leukemia cell).

Trend of its global weights (beta)
Verified through the literature.

(2) What HMs are important?

Validation of Attention Weights (using one extra HM signals)

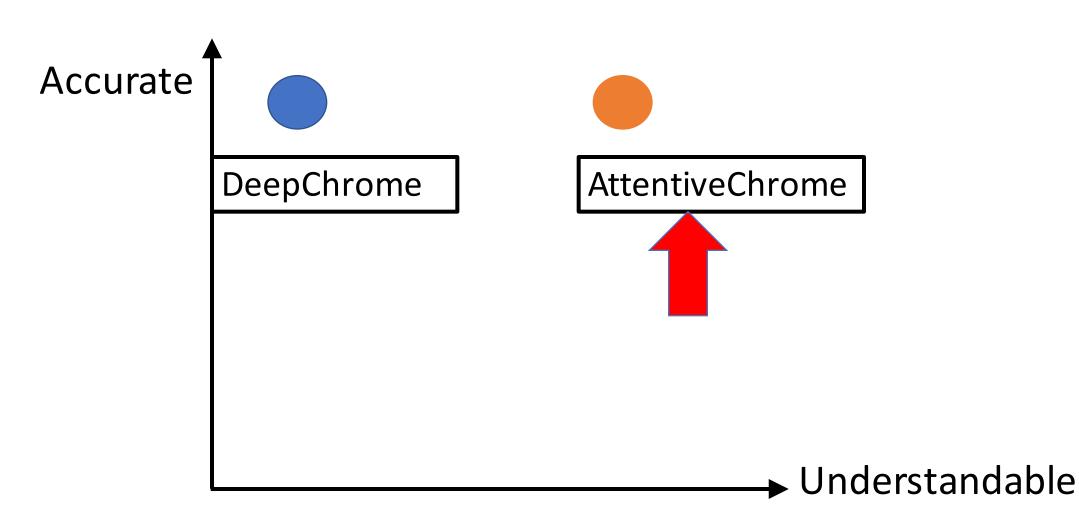
Table 3: Pearson Correlation values between weights assigned for H_{prom} (active HM) by different visualization techniques and H_{active} read coverage (indicating actual activity near "ON" genes) for predicted "ON" genes across three major cell types.

Viz. Methods	H1-hESC	GM12878	K562
α Map (LSTM- α)	0.8523	0.8827	0.9147
α Map (LSTM- α, β)	0.8995	0.8456	0.9027
Class-based Optimization (CNN)	0.0562	0.1741	0.1116
Saliency Map (CNN)	0.1822	-0.1421	0.2238

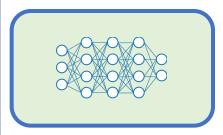
Additional signal - H3K27ac (H-Active) from REMC

Average local attention weights of gene=ON correspond well with H-active

Indicating AttentiveChrome is focusing on the correct bin positions

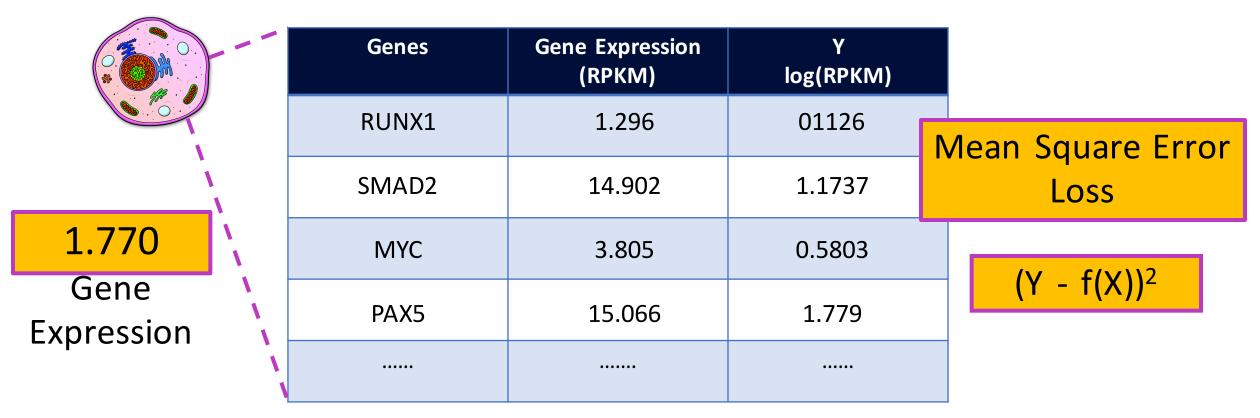


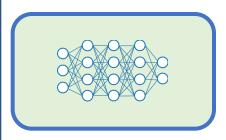
R. Singh, et al. "Attend and Predict: Understanding Gene Regulation by Selective Attention on Chromatin". NIPS (2017)¹⁰⁹



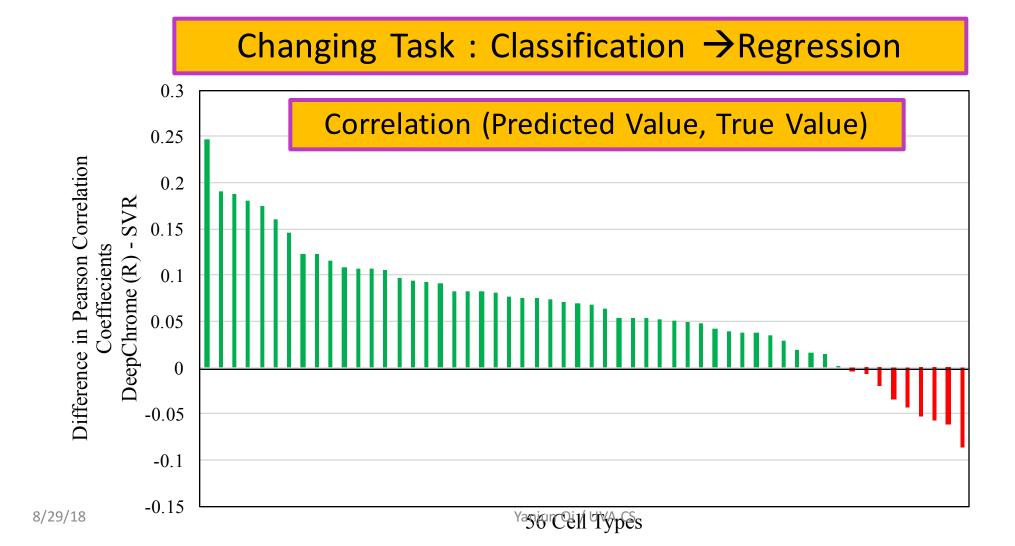
Where are we heading?

Changing Task : Classification \rightarrow Regression



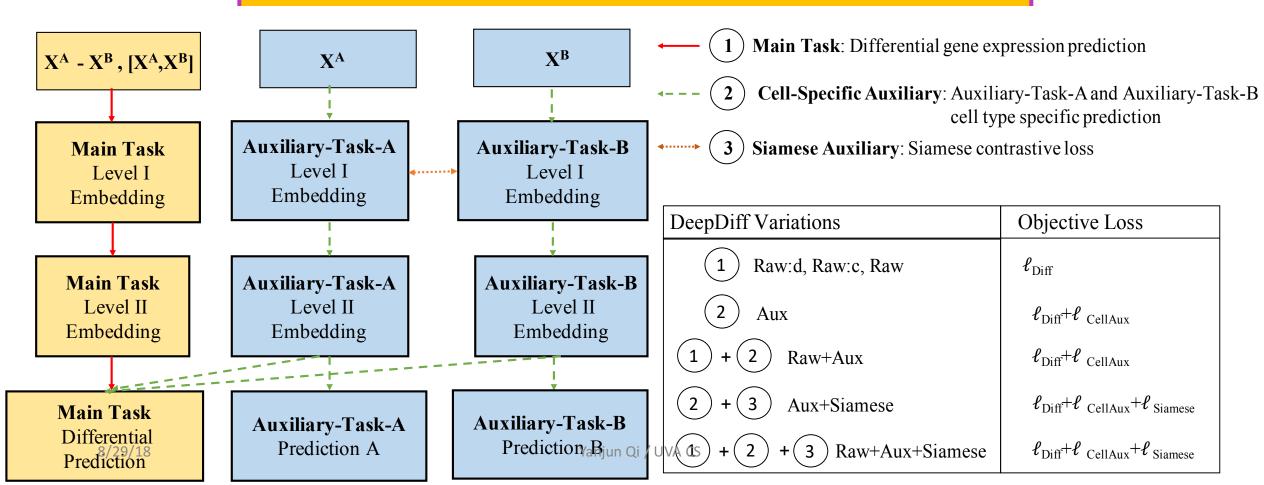


Where are we heading?



DeepDiff: Deep-learning for predicting Differential gene expression from histone modifications

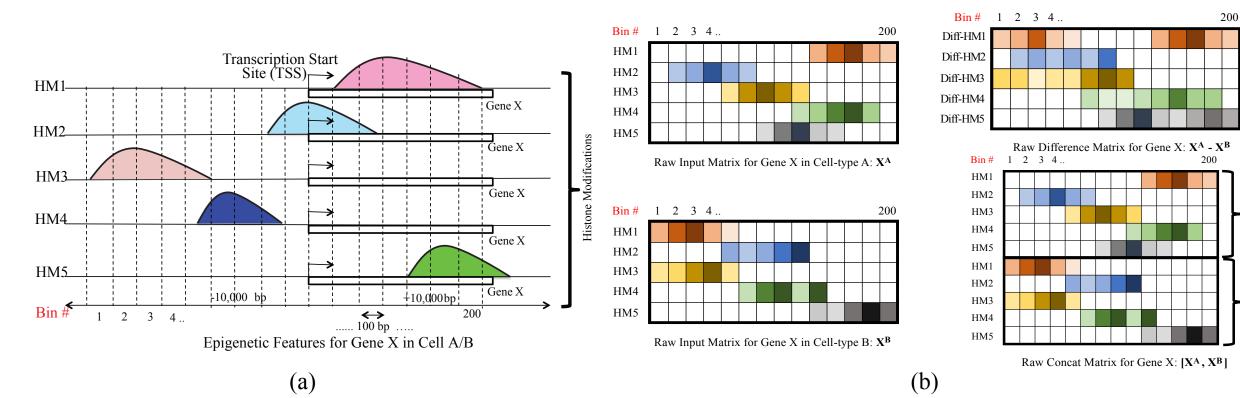
Changing Task : Cell-Specific → Cross Cell



Where are we heading?

DeepDiff: Deep-learning for predicting Differential gene expression from histone modifications

Changing Task : Cell-Specific → Cross Cell



Cell type A

Cell type B

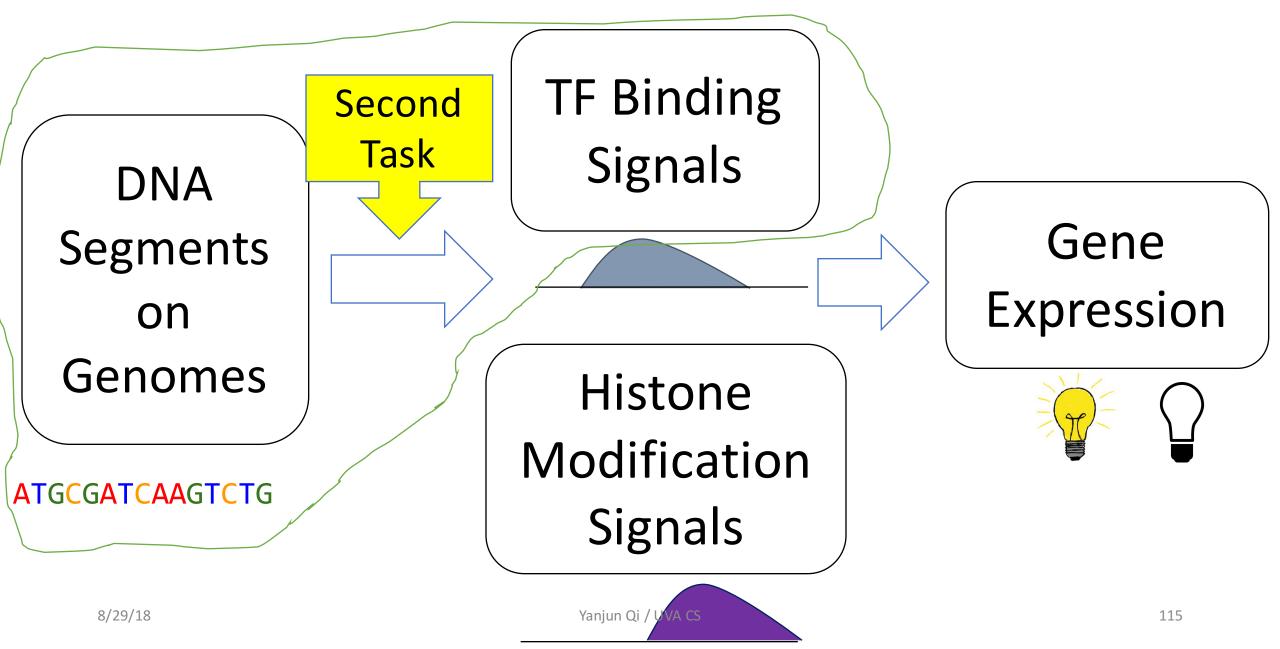
Today

- Machine Learning: a quick review
- Deep Learning: a quick review
- Background Biology: a quick review
- Deep Learning for analyzing Sequential Data about Regulation:
 - DeepChrome
 - AttentiveChrome
- DeepMotif

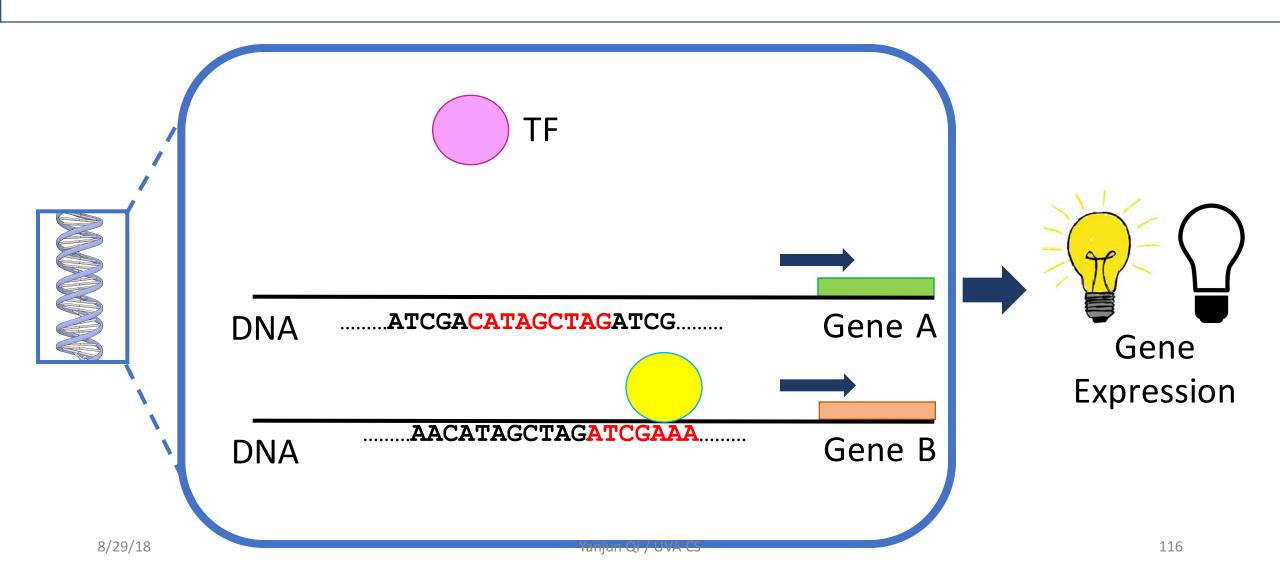
https://www.deepchrome.org

https://qdata.github.io/deep2Read/

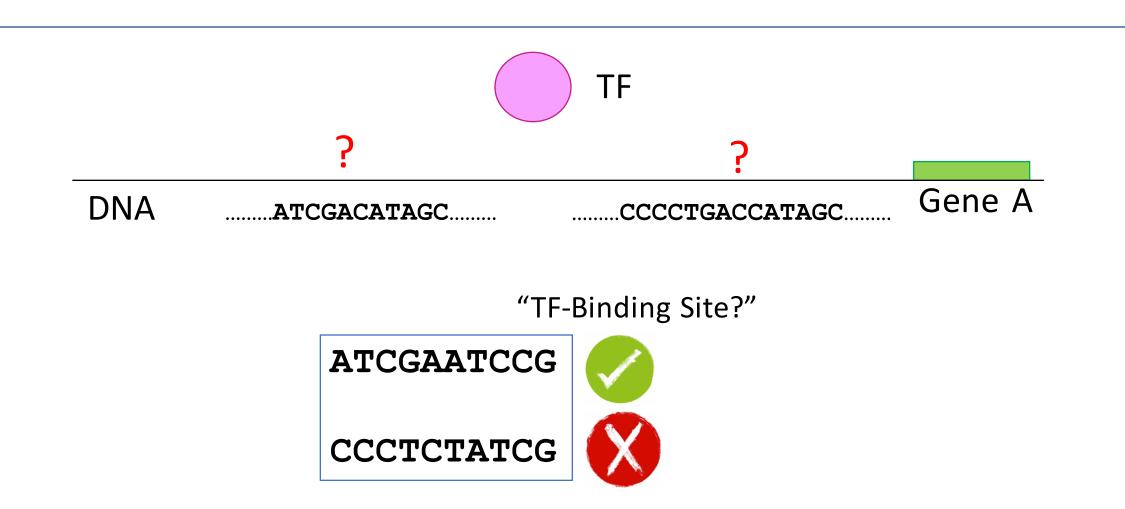
Many Important Data-Driven Computational Tasks



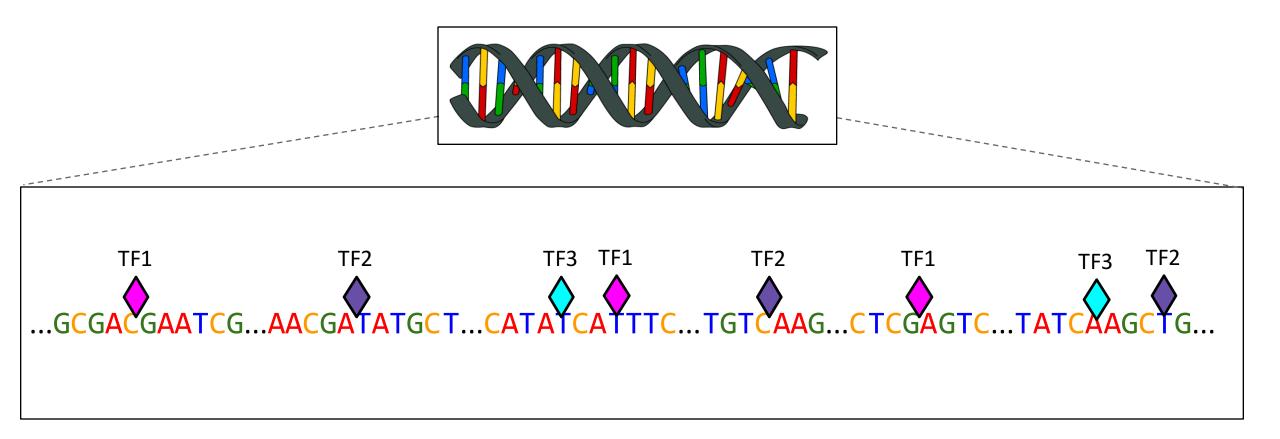
Transcription Factors



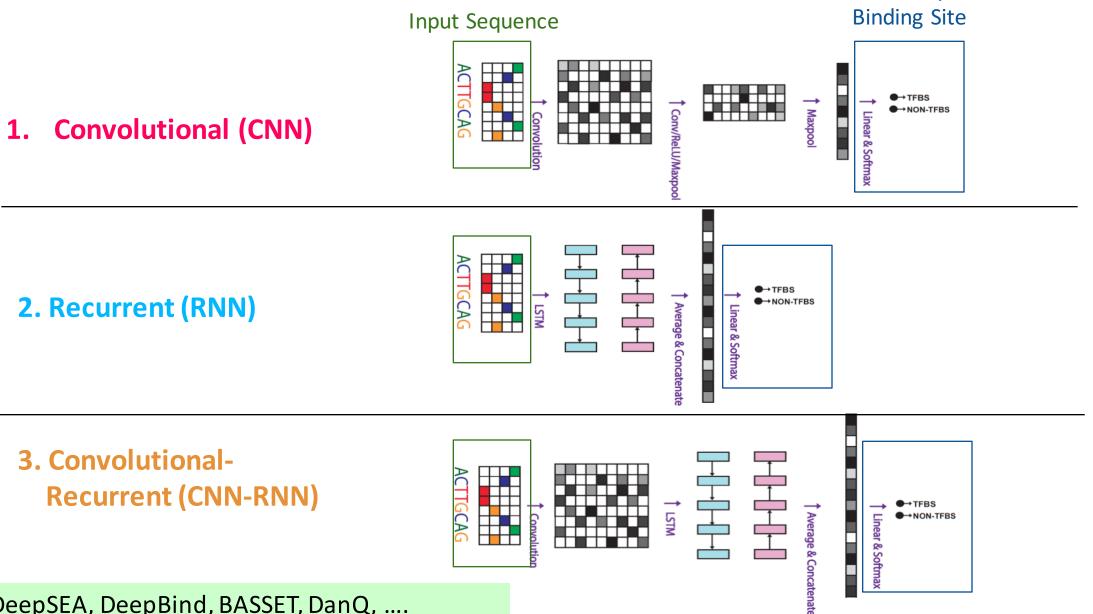
TF-Binding Site?



Task: Sequence Based Functional Annotation Tasks

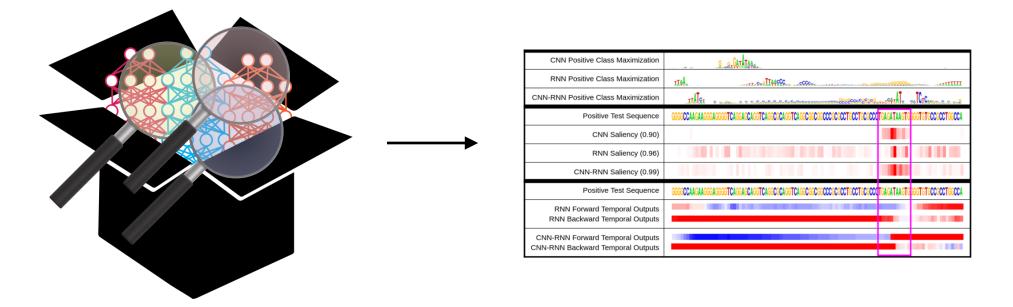


Literature: Various DNN Tools



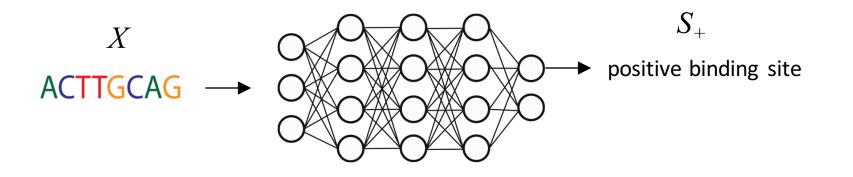
Deep Motif Dashboard: Understand DNNs by Post Analysis

Lanchantin, Singh, Wang & Qi - Pacific Symposium on Biocomputing, 2017

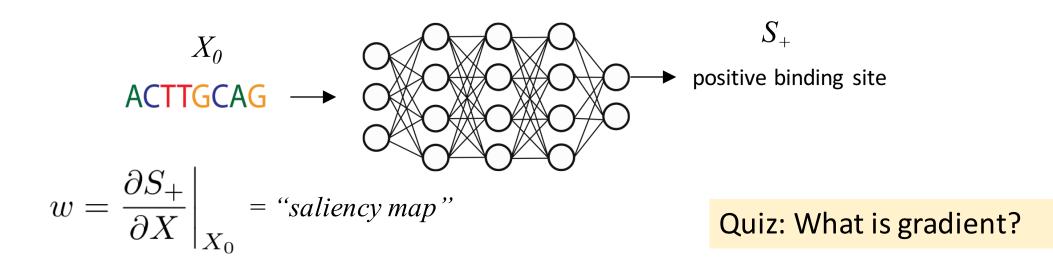


1. Saliency Maps - recommending on CNN kind

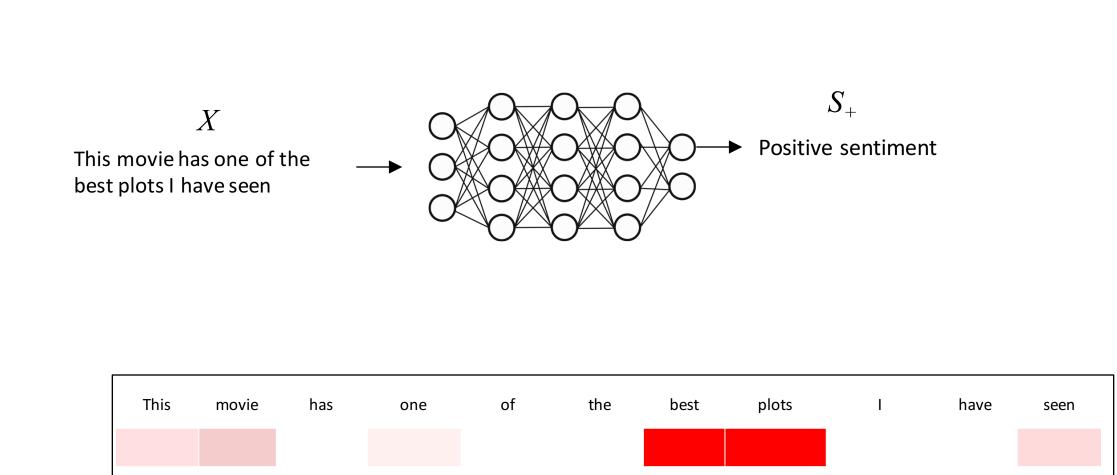
- 2. Temporal Output Values recommending on RNN kind
- 3. Class Optimization recommending on CNN kind

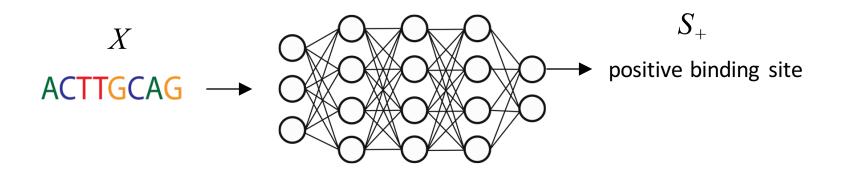


Which nucleotides are most important for my current-sample classification?



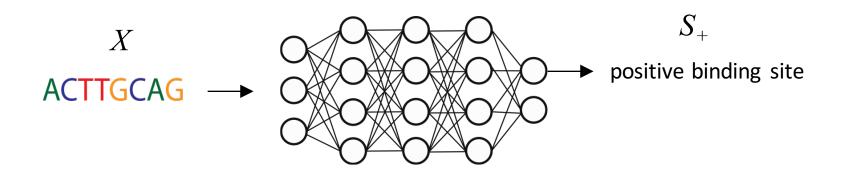
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps, ICLR 2013





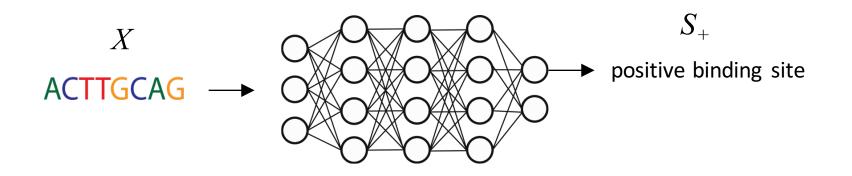
Positive Test Sequence	TGCTCGCATCCTATTGGCCACGTTAGTCACATGGCCCCACCTGGCTGCAAAGCACGCTGGGAAACGTAGTCTTTCTT
Saliency Map	

= important nucleotide for prediction

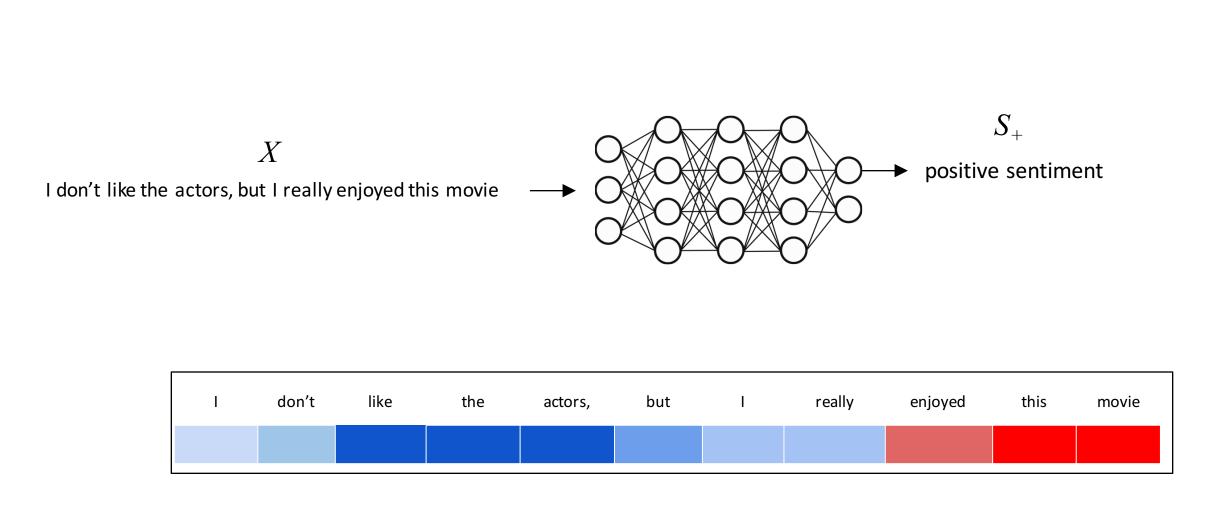


What are the model's predictions at each timestep of the DNA sequence?

DeMo Dashboard - Lanchantin, Singh, Wang, & Qi



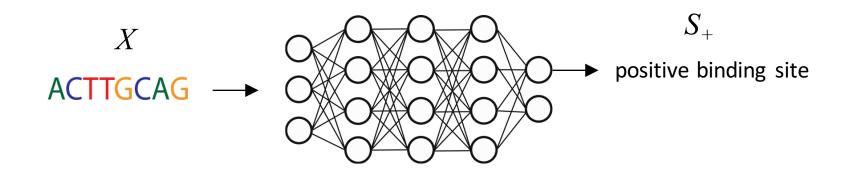
Check the RNN's prediction scores when we vary the input of the RNN starting from the beginning to the end of a sequence.



= positive sentiment

= negative sentiment

DeMo Dashboard - Lanchantin, Singh, Wang, & Qi

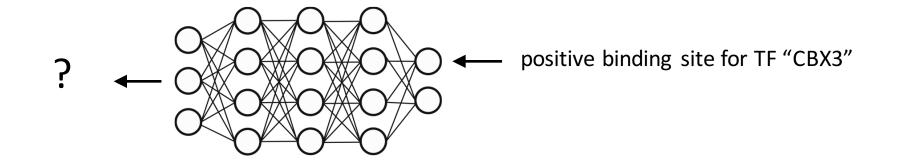


Positive Test Sequence	CTTCTGCTCGCATCCTATTGGCCACGTTAGTCACATGGCCCCACCTGGCTGCAAAGCACGCTGGGAAACGTAGTCTTTCTT
RNN Forward Output	
RNN Backward Output	

= negative binding site prediction

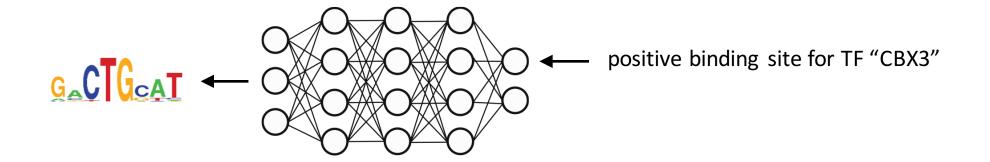
DeMo Dashboard - Lanchantin, Singh, Wang, & Qi

3. Class Optimization



For a particular TF, what does the optimal binding site sequence look like?

3. Class Optimization

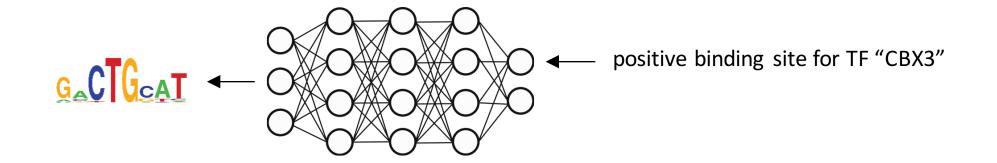


$$\arg\max_X S_+(X) + \lambda \|X\|_2^2$$

Where X is the input sequence and the score S_+ is probability of sequence X being a positive binding site

Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps, ICLR 2013

3. Class Optimization



Visualization Methods

Sequence
Specific1. Saliency Maps – (CNN kind)2. Temporal Output Values – (RNN kind)TF Specific3. Class Optimization – (CNN kind)

code available at: deepmotif.org

8/29/18

DeMo Dashboard - Lanchantin, Singh, Wang, & Qi

Yanjun Qi / UVA CS

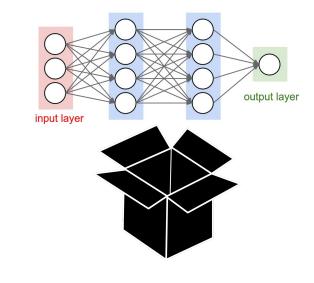
Related Work to Post-Understand DNN

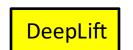
- Deconvolution
- Perturbation-based
- Backpropagation-based
- Difference to Reference
- Influence based

Temporal Output Values

Influential Function / ICML27 Best Paper

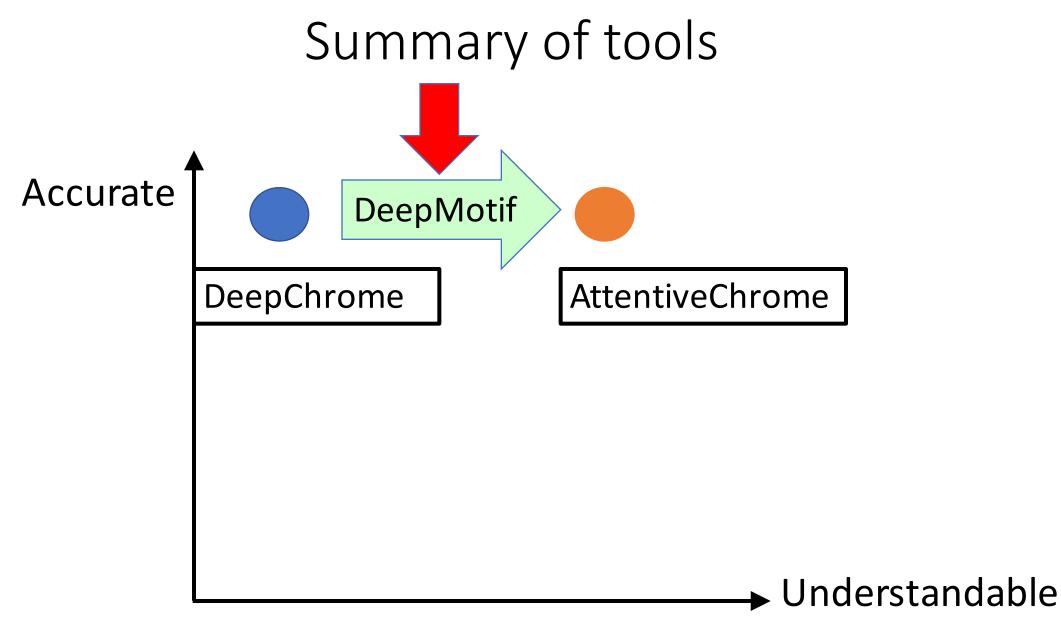
Class Optimization

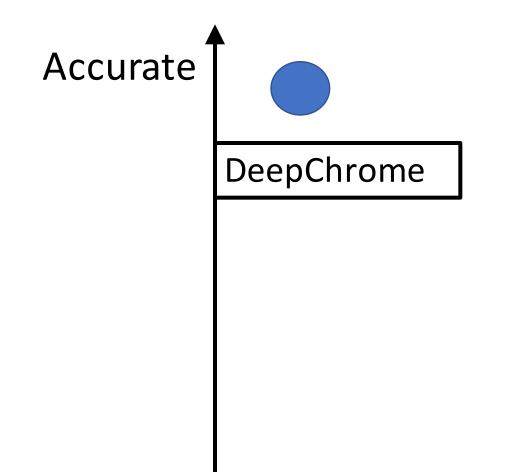


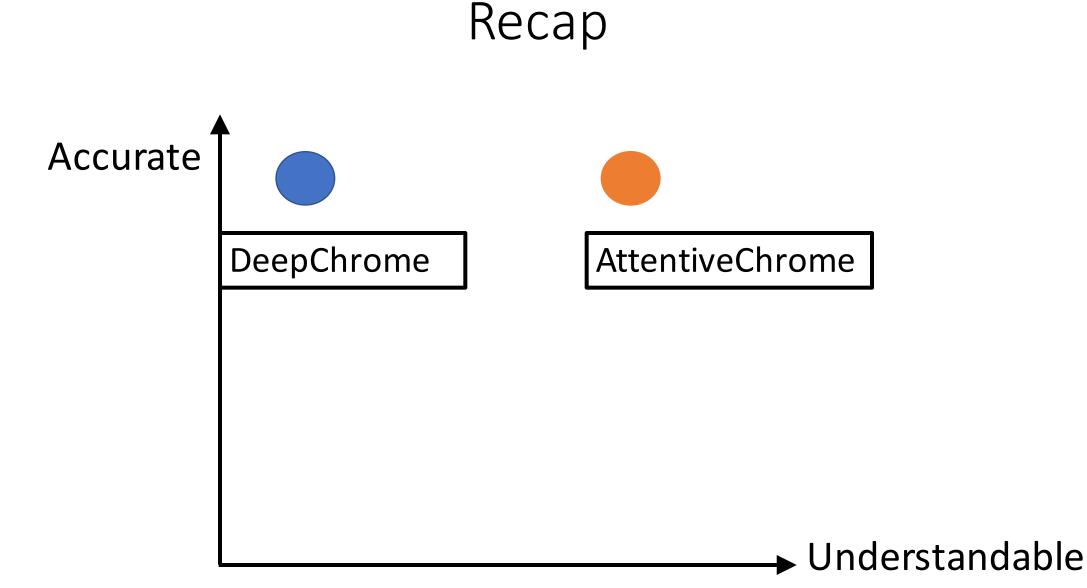


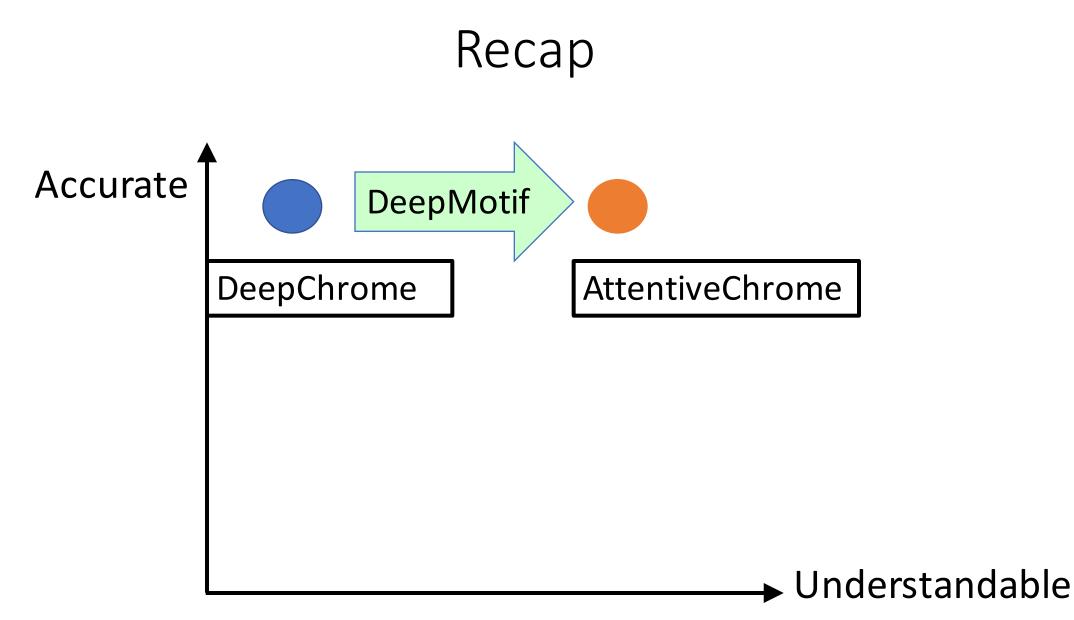
Saliency Map

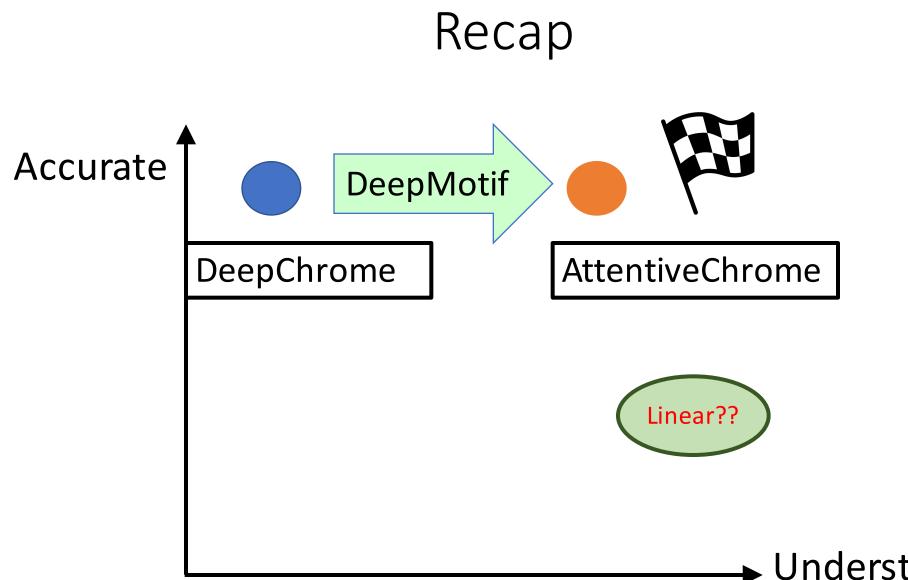
Yanjun Qi / UVA CS





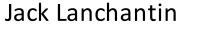






Acknowledgements

Ritambhara Singh



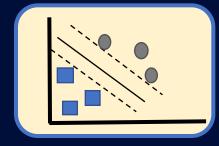
Arshdeep Sekhon

Beilun Wang

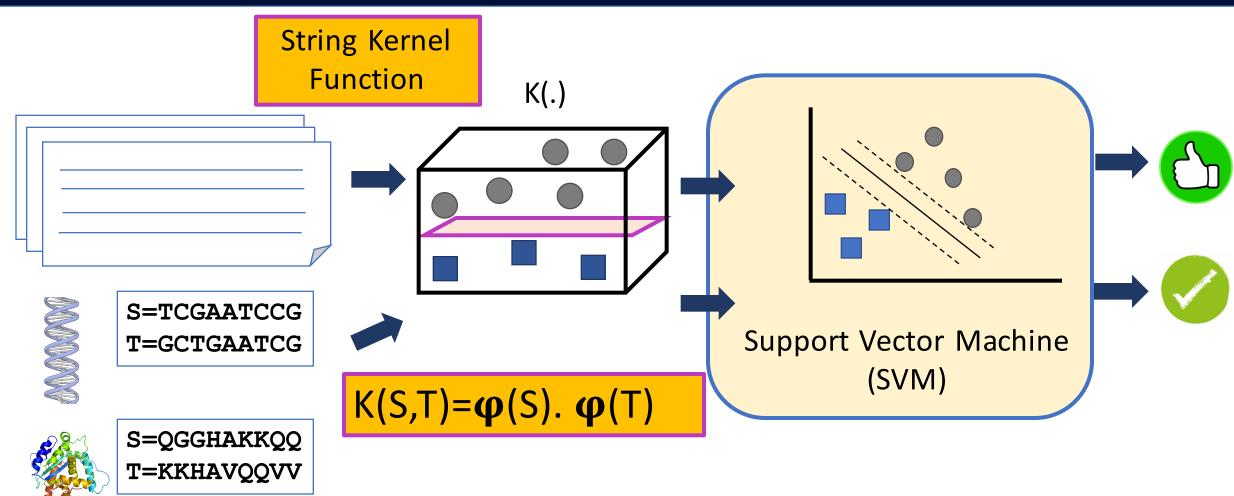
UVA Department of Biochemistry and Molecular Genetics: Dr. Mazhar Adli

More Tools: A Fast and Scalable Tool to Classify Biological Sequences

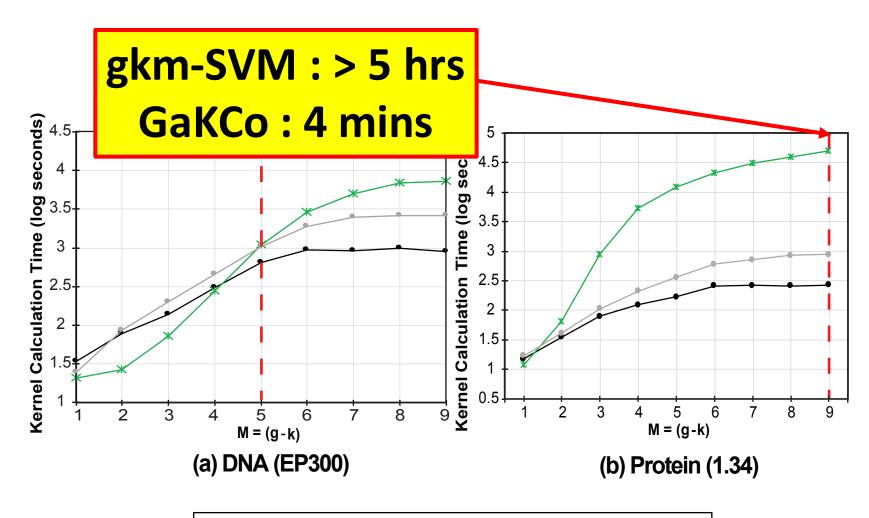
https://github.com/QData/iGakco-SVM



String Kernel + SVM



Our Tool Scales well with increasing Σ and m

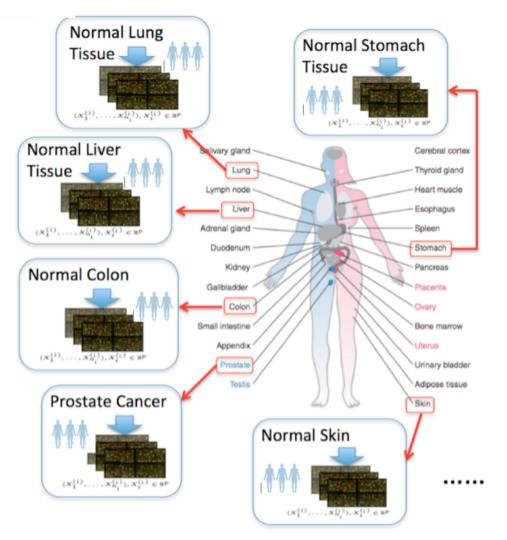


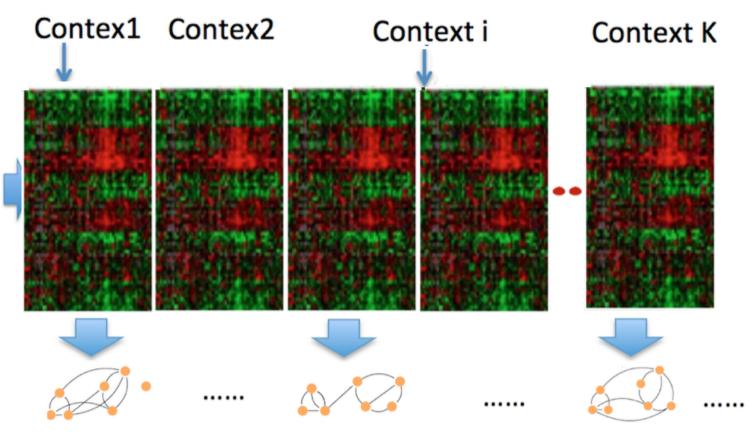
- GaKCo - GaKCo (Single thread) ── gkm-SVM

More Tools: Extracting graphs from data

https://www.jointggm.org

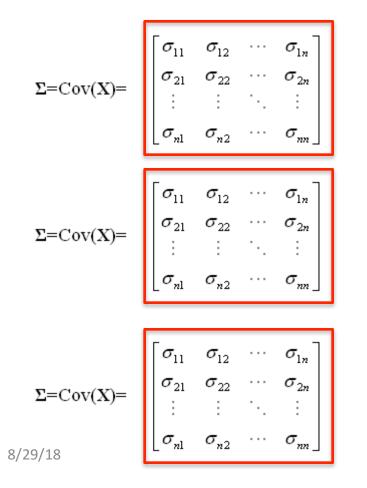
Motivation: Graphs vary across contexts





Limitation of Previous Methods : Storage

e.g., calculate the gradient



When K contexts=91, p nodes= 30K

 $O(Kp^2)$ in memory

Double type: 65 TB

Limitation of Previous Methods: Speed

Suppose they have the same iteration number T K Traditional Optimization Method

---- Block Coordinate Descent :

 $O(K^3p^4)$ / Itera

K = 91, p= 30K

more than 2 billion years

Current Optimization: ADMM based ---- Still needs SVD for each covariance matrix

Yaniur

SVD for the matrices needs

$$O(Kp^3) \longrightarrow 3.5 \text{ days}$$

 $A = 0 \text{ ltera}$

Our Tools

- Fast and scalable estimators for joint graph discovery from heterogeneous samples
- Parallelizable algorithms
- Sharp convergence rate (sharp error bounds)

More details at: http://www.jointggm.org/