Adversarial Examples that Fool both Computer Vision and Time-Limited Humans

G.F. Elsayed¹, S. Shankar², B. Cheung³, N. Papernot⁴, A. Kurakin¹, I. Goodfellow¹, J. Sohl-Dickstein¹

¹Google Brain ²Stanford University ³UC Berkeley ⁴Pennsylvania State University

arXiv: 1802.08195
Reviewed by : Bill Zhang
University of Virginia
https://qdata.github.io/deep2Read/
Outline

Introduction

Related Work

Methods

Results

Discussion and Future Work

Conclusion

References
Introduction
Basic Premise and Motivation

- Interesting phenomenon: adversarial examples often transfer from one model to another
- Perhaps humans can also be susceptible; already prone to cognitive bias and optical illusions, but not how adversarial examples work
- Neuroscience often used as existence proof for ML capabilities; if humans can resist certain classes of adversarial examples, ML models should also be able to
- Likewise, if adversarial examples can affect brain, may help understanding of neuroscience
Related Work

Adversarial Examples

- Goodfellow et al. defines adversarial examples as "inputs to machine learning models that an attacker has intentionally designed to cause the model to make a mistake"

- Important: adversarial examples are designed to cause a mistake, not to differ from human judgment; assume that perturbations do not change true class

- Important: adversarial examples are not defined to be imperceptible
Related Work

Clues that Human Transfer is Possible

- Adversarial examples transfer across ML models, even with differing architectures, training sets, and algorithms
- Kurakin et al.: adversarial examples transfer from digital to physical world, despite differences in lighting and cameras
- Liu et al.: adversarial examples optimized to fool many models more likely to fool another model
- Recent studies have also found that adversarial examples sometimes have meaningful transformations to human observers (i.e. cat to computer seems more computer-like to humans)
Related Work

Biological and Artificial Vision

- Recent research has found similarities between deep CNNs and primate visual system
- Activity in deeper CNN layers predictive of visual pathway of primates
- Reisenhuber and Poggio: developed model of object recognition in human cortex that is very similar to CNNs
- Kummerer et al.: CNNs predictive of human gaze fixation
- Style transfer: intermediate CNN layers capture artistic style meaningful to humans
- Freeman et al.: used representations in CNN-like model to develop psychophysical metamers
Related Work
Notable Differences

- Images used for CNNs typically static rectangular images with constant spatial resolution
- Primate eye has eccentricity dependent spatial resolution; also sensitive to time and non-uniform colors
- CNNs fully feed-forward architectures; human cortex has many more feedback connections
- Humans do not consider static scenes, but actively explores with saccades
Methods
Models and Datasets

- Images from ImageNet
- Used 6 specific classes: dog, cat, broccoli, cabbage, spider, snake
- Further grouped into 3 larger classes: pets, hazards, vegetables
- Used ensemble of k CNN models trained on ImageNet
- Prepend each model with retinal layer with eccentricity-dependent blurring to approximate human image inputs
- Adversarial examples generated with iterated gradient descent with l_∞ norm of all perturbations restrained to fixed ϵ
Methods

Human Psychophysics Experiment: Procedures

- 38 subjects with normal/corrected vision
- Subjects asked to classify images appearing on screen as one of two choices
- Subjects directed to look at fixation cross and afterwards, image is shown for 63 ms, followed by 10 high contrast binary masks
- Subjects given 2.2-2.5 seconds to respond after masks appear
Methods
Human Psychophysics Experiment: Conditions

- Images presented in 1 of 4 conditions:
 - *image*: Original ImageNet images rescaled to [40, 255-40] to avoid clipping after adding perturbations
 - *adv*: Perturbed images; used $\epsilon = 32$, large enough to be noticed by humans but small enough that no-limit humans still identify true class correctly
 - *flip*: Same as adv, except flip perturbation vertically before adding to image; make sure changes in human accuracy are not caused by image distortion
 - *false*: Two options presented as choices are both wrong; see if adversarial examples can influence towards specific wrong choice

- Pre-filtered images to not have large distinctions between classes due to brightness or overall color
Methods

Experiment Diagram

(a) image adv flip

(b) image adv (to dog) adv (to cat)

(c) class 1 (e.g. cat)
class 2 (e.g. dog)

(d) fixation stimulus
light sensor
response time box

repeat

[71, 63] ms
200 ms

{[2500, 2200]} ms
Results

Transfer to Computer Vision Models

➤ Assess transfer of adversarial examples to two test models not included in ensemble
➤ Both models have > 75% accuracy on clean images
➤ adv and $false$ examples succeeded 57 – 89% of the time, $flip$ succeeded less than 1.5% of the time, validating its use as a control
Results

Transfer to Humans

- Want to show that adversarial examples do not simply degrade image quality or discard information to increase human error rate
- Therefore, first show that with a fixed error rate (where human is forced to be wrong) adversarial examples influence choice among two classes
- Then, show that adversarial examples increase error rate
Results

Transfer to Humans: Two Incorrect Classes

- Used the *false* condition images
- If adversarial perturbation completely ineffective, would expect choice of target class to be uncorrelated to with subject’s reported class; average rate should be 0.5 for each image
- Used larger class groups (pets, hazards, vegetables)
- In all cases, probability significantly above 0.5
- Also found that reaction time inversely correlated with perceptual bias pattern i.e. subjects more confident when adversarial perturbation more successful when biasing decision
Results

Transfer to Humans: Increase in Human Error Rate

▶ Now show that we can bias human response against true class even when true class is an option
▶ Used image, adv, and flip conditions
▶ Most subjects had lower accuracy on adv than image
▶ Result may, however, only imply that signal to noise ratio in adversarial images is lower; partially addressed with flip which has perturbation with identical statistics
▶ Majority of subjects also had lower accuracy on adv than flip images
Results
Transfer to Humans: Increase in Human Error Rate

- Results suggest that direction of adversarial perturbation with specific image produces perceptually relevant features for humans
- Perhaps strong black box attacks to CNNs can transfer to humans
- Interestingly, average response time longer for adv condition images; seems to contradict false condition’s results
- Perhaps in false case perturbations caused higher confidence and in adv case perturbations caused lower confidence due to competing adversarial and true class features in adv
Results

Graphs: Human Error Rate

- a) Probability of choosing correct target class significantly > 0.5
- b) Adversarial images cause more mistakes than both original image and image with flipped perturbation
- c) Image of spider that time-limited humans perceived to be a snake
Results

Graphs: Human Response Time

- a) Average response time to false images
- b) Average response time to image, adv, and flip
- c) Probability of choosing correct target class decreases with increased reaction time in false
Did examples fool humans or did they change the true class?
 - Perturbations small enough that true class unchanged for human with no time limit
 - Thus, we can be confident that examples did fool humans

How did the adversarial examples work?
 - No controlled experiments, but generally observed edge disruptions, enhancing edges through increased contrast and creating texture boundaries, modifying textures, and taking advantage of dark regions of images
Discussion

- What are the implications for ML security and society?
 - The fact that the examples fool time-limited humans but not no-limit humans suggest lateral and top-down connections used by no-limit human are relevant to human robustness against adversarial examples
 - Perhaps ML models can become more robust through similar connections
 - Also suggest that images can be manipulated to cause human observers to have unusual reactions

- Future Work
 - How does transfer to humans depend on ϵ?
 - Was model ensembling crucial for the transfer?
 - Can retinal preprocessing layer be removed?
Conclusion

- This work showed that adversarial examples based on perceptible but class-preserving perturbations that fool multiple ML models can also fool time-limited humans.
- Show strong similarities between CNNs and human visual system; expect work to help in both future machine learning and neuroscience research.
References