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Theorem 1: Global Optimality of 
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Image Generation
● Input image and noise results in output image
● D: gradient ascent

● G: gradient descent

Goodfellow et al. Generative Adversarial Nets. NIPS 2014
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Deep Convolutional GANs (DCGAN)

Alec Radford, Luke Metz, Soumith Chintala. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, ICLR 2016

● Combine CNN and GAN for unsupervised learning
● Learns a hierarchy of feature representations
● Previous attempts to scale up GANs using CNNs unsuccessful
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DCGAN - The Convolution Operation
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DCGAN - Convolutional Neural Networks
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DCGAN - Contributions
● Set of constraints on architectural topology of Convolutional GANs that make 

them stable to train 
● Trained discriminators used for classification tasks, competitive performance
● Learned filters learned to draw specific objects
● Generators allow for easy manipulation of semantic qualities of generated 

samples
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DCGAN - Related Work
● Strided Convolutions: Tobias, Jost, et al. “Striving for Simplicity: The All Convolutional Net.” [1412.6806] Striving for 

Simplicity: The All Convolutional Net, 13 Apr. 2015, arxiv.org/abs/1412.6806.
● Representation learning: Rasmus, Antti, Valpola, Harri, Honkala, Mikko, Berglund, Mathias, and Raiko, Tapani. 

Semi- supervised learning with ladder network. arXiv preprint arXiv:1507.02672, 2015. 
https://arxiv.org/abs/1507.02672

● Laplacian Pyramid:  Denton, et al. “Deep Generative Image Models Using a Laplacian Pyramid of Adversarial 
Networks.” [1506.05751] Deep Generative Image Models Using a Laplacian Pyramid of Adversarial Networks, 18 
June 2015, arxiv.org/abs/1506.05751. https://arxiv.org/abs/1506.05751

● Deconvolutions: Dosovitskiy, Alexey, Springenberg, Jost Tobias, and Brox, Thomas. Learning to generate chairs 
with convolutional neural networks. arXiv preprint arXiv:1411.5928, 2014. https://arxiv.org/abs/1411.5928

● Batch Normalization:  Sergey, et al. “Batch Normalization: Accelerating Deep Network Training by Reducing 
Internal Covariate Shift.” [1502.03167], 2 Mar. 2015, arxiv.org/abs/1502.03167.

● Global Average Pooling: Mordvintsev, Alexander, Olah, Christopher, and Tyka, Mike. Inceptionism : Going deeper 
into neural networks. http://googleresearch.blogspot.com/2015/06/inceptionism-going-deeper-into-neural.html. 
Accessed: 2015-06-17.
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DCGAN - Approach
● Replace spatial pooling layers with strided convolutions

○ Allows network to learn its own downsampling for discriminator
○ Allows network to learn its own upsampling for generator (fractionally strided)

● Use batchnorm in generator and discriminator
○ Input to each unit normalized to have zero mean and unit variance
○ Prevent mode collapse, stabilize training

● Remove fully connected hidden layers for deeper architectures
● ReLU activation in generator for all layers except output, which uses Tanh
● LeakyReLU activation in discriminator for all layers

○ Compare to maxout activation in Goodfellow
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Max Pooling
● Reduces dimensionality of input
● Prevents overfitting, reduces computational cost
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Strided Convolutions (Discriminator)
● Normal convolution operation
● Stride determines step size across the input
● Reduces dimensionality of output
● Compared to pooling

○ Pros: more general, better summarizer
○ Cons: higher training time
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Fractional Convolutions (Generator)
● Also known as transposed convolutions and wrongly as deconvolutions
● Upsampling method (lower to higher resolution)
● Stride s is less than 1
● Filter weights are learned by backprop
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Fractional Convolutions (Generator)
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Conditional GANs
● Multimodal learning with class conditional
● Modified GAN Loss

Mirza, et al. “Conditional Generative Adversarial Nets.” 2014, 
29
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Conditional GANs - Domain Transfer

 Zhu, Jun-Yan, et al. “Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks.”
31
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Kim, et al. “Learning to Discover Cross-Domain Relations with Generative Adversarial Networks” 2017.
33
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StarGAN - Background
● Image-to-image translation: change a particular aspect of a given image to 

another (e.g. facial expression smiling to frowning)
● Attribute: meaningful feature inherent in image (e.g. hair color/gender/age)
● Attribute value: value of attribute (e.g. brown hair) 
● Domain: a set of images sharing the same attribute value

Choi et al, “StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation”

https://arxiv.org/abs/1711.09020


Previous Work
● Conditional GANs - steer image translation to various target domains by 

providing conditional domain information
● Image-to-image translation

○ Can preserve key attributes of domains being transferred
○ HOWEVER every current framework can only transfer between two domains at a time, and is 

not scalable.

Choi et al, “StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation”
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Objective: Train a single generator to learn 
mappings between domains.

Choi et al, “StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation”

https://arxiv.org/abs/1711.09020


Model
● Generator 

○ Where x is the input image to translate
○ c is a given target domain label
○ y is the output image

● Discriminator
○ Where src is the probability distribution over sources
○ cls is the probability over domain labels

Choi et al, “StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation”
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Adversarial Loss
● Make generated images indistinguishable from real images (1)

Choi et al, “StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation”

https://arxiv.org/abs/1711.09020


Domain Classification Loss (DCL)
● Goal is to translate x into an output image y, which is properly classified to the 

target domain c.
● Objective is decomposed into two terms: DCL of real images used to optimize 

D, and domain classification loss of fake images used to optimize G.

   

Choi et al, “StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation”

https://arxiv.org/abs/1711.09020


Reconstruction Loss
● Minimizing adversarial loss and classification loss means G is able to 

generate realistic images to the right domain, but it does not guarantee that 
translated images only change the domain-related part of image.

● AKA cycle-consistency loss, where G takes in the translated image and the 
original domain label c’

Choi et al, “StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation”

https://arxiv.org/abs/1711.09020


Summary
● Adversarial (1)
● Domain Classification (2)(3)
● Reconstruction (4)
● Generator Objective (5)
● Discriminator Objective (6)

○ With importance hyperparams

Choi et al, “StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation”

https://arxiv.org/abs/1711.09020


Training with Multiple Datasets
● Label information is only partially known to each dataset
● Ex: Face Datasets

○ CelebA (hair color, eye color, skin color)
○ RaFB (facial expressions)

● Complete information on class label vector c’ is required for reconstruction of 
input image x from translated image G(x, c)

● Mask Vector: a n-dimensional one-hot vector m that allows StarGAN to ignore 
unspecified labels and focus on explicitly known labels

○ n = # of datasets
○ c.i = vector of labels for ith dataset

Choi et al, “StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation”
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Image Generation via Text

Reed et al. “Generative Text-to-Image Synthesis” 2016 
52
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Zhang et al, “StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks” ICCV 2017 
53

https://arxiv.org/abs/1612.03242


StackGAN - Motivation
● Many practical applications of generating images from text.

○ Photo editing
○ Computer-aided design

● Current state of the art fails to generate necessary details and vivid object 
parts.
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StackGAN - Introduction
● Generating photo-realistic images is difficult. 
● Training instability from higher resolutions - can’t simply add upsampling.
● Natural image distribution and implied model distribution might not overlap in 

high dimensional pixel space.
● Contributions:

○ StackGAN - generates 256x256 photorealistic images conditioned on text descriptions
○ Novel conditional augmentation technique that increases diversity of produced images 

55
Zhang et al, “StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks” ICCV 2017 

https://arxiv.org/abs/1612.03242


StackGAN - Related Work
● Stable Training:

○ L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein. Unrolled generative adversarial networks. In ICLR, 2017.
○ T. Salimans, I. J. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved techniques for training gans. 

In NIPS, 2016.
○ A. Odena, C. Olah, and J. Shlens. Conditional image synthesis with auxiliary classifier gans. In ICML, 2017.
○ M. Arjovsky and L. Bottou. Towards principled methods for training generative adversarial networks. In ICLR, 2017.
○ J. Zhao, M. Mathieu, and Y. LeCun. Energy-based generative adversarial network. In ICLR, 2017.

● Conditional Image Generation
○ X. Yan, J. Yang, K.Sohn, and H. Lee. Attribute2image:Conditional image generation from visual attributes. In ECCV, 

2016.
○ S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee. Generative adversarial text-to-image synthesis. In 

ICML, 2016.
● Image Super-Resolution

○ C. K. Snderby, J. Caballero, L.Theis, W. Shi, and F. Huszar. Amortised map inference for image super-resolution. In 
ICLR, 2017.

○ E. L. Denton, S. Chintala, A. Szlam, and R. Fergus. Deep generative image models using a laplacian pyramid of 
adversarial networks. In NIPS, 2015.

● Text Embedding
○ S. Reed, Z. Akata, B. Schiele, and H. Lee. Learning deep representations of fine-grained visual descriptions. In CVPR, 

2016. 56
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StackGAN - Method
● 2-stage training process
● Stage-I GAN

○ sketches the primitive shape and basic colors of the object conditioned on the given text 
description

○ draws the background layout from a random noise vector, yielding a low-resolution image

● Stage-II GAN
○ corrects defects in the low-resolution image from Stage-I
○ completes details of the object by reading the text description again, producing a 

high-resolution photo-realistic image.
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Conditional Augmentation
● Latent space for text embedding is extremely high dimensional (>100)
● Limited data causes discontinuity in latent data manifold
● Randomly sample conditioning variables from independent Gaussian 

distribution where:
○ Mean and diagonal covariance matrix are functions of the text embedding

● Enforce smoothness through regularization during training
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Stage-1 GAN
● Real image I
● Text embedding phi
● Gaussian conditional variable c to capture the meaning of embedding with 

variations
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Stage-2 GAN
● Conditioning on output of first stage and text embedding
● Real 256x256 images input to the discriminator
● Randomness z not used, assumed to be preserved from previous output s0
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Zhang et al, “StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks” ICCV 2017 
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Generating Sequences
● Inputs/Outputs
● Generator

● Discriminator - RL objective

Yu et al. “SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient“ AAAI 2017.
68
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GAN Motivation - good for real data
● Two problems
● Struggles with generating sequences of discrete tokens

○ Continuous data has a direct gradient

○ Slight changes from gradient do not have corresponding discrete tokens (e.g. "dog+.001")

● Score only evaluated by D after fully generated sequence

Yu et al. “SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient“ AAAI 2017.

https://arxiv.org/abs/1609.05473


SeqGAN Problem Statement
Given a dataset of real-world structured sequences, train a theta-parameterized 
generative model G to produce a sequence

Where Y is the vocabulary of candidate tokens.

Traditional Approach: Maximum Likelihood Estimation - exposure bias (trained on 
data distribution but tested on model distribution - quickly accumulate error)

Yu et al. “SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient“ AAAI 2017.

https://arxiv.org/abs/1609.05473


SeqGAN Approach - GAN (Goodfellow)
● Generator G

○ Noise vector for entropy
○ Generate real-looking data to fool discriminator

● Discriminator D
○ Output real value for P(real data) versus P(fake data)
○ Essentially a classifier between real and fake

● Minimax game:

Yu et al. “SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient“ AAAI 2017.

https://arxiv.org/abs/1609.05473


SeqGAN Approach - Reinforcement Learning
● Generator G as an agent of RL - sequential decision making
● S: set of states s ∈ S - tokens generated so far
● Policy  - determine the next token to generate given previous state
● Reward model is the discriminator        = P(real)

Yu et al. “SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient“ AAAI 2017.

https://arxiv.org/abs/1609.05473


Approach - RL Objective
● Generator loss: Maximize expected reward

● Q-function is state-action value, which is how good it is for agent to take 
action y (next possible token) at state s. 

Yu et al. “SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient“ AAAI 2017.
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Monte Carlo Tree Search (AlphaGo)
● Q only calculated for full sequence, use Monte Carlo tree search for intermediates (4)

● Algorithm:
● Selection: start from root R and select successive child nodes down to a leaf node L. 
● Expansion: unless L ends the sequence, create one (or more) child nodes and choose node C from one of them.
● Simulation: play a random playout from node C. This step is sometimes also called playout or rollout.
● Backpropagation: use the result of the playout to update information in the nodes on the path from C to R.

Yu et al. “SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient“ AAAI 2017.

https://arxiv.org/abs/1609.05473


Training
● Generator - policy gradient to maximize long-term reward (8)

● Discriminator - classification into two classes: real/fake, same as Goodfellow (5)

● Start with MLE to pretrain
● Train generator in g steps, then discriminator, alternating

Yu et al. “SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient“ AAAI 2017.

https://arxiv.org/abs/1609.05473
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Models
● G - RNN with LSTM
● D - CNN

Yu et al. “SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient“ AAAI 2017.

https://arxiv.org/abs/1609.05473


Experiments 
Obama Speech Text Generation

Yu et al. “SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient“ AAAI 2017.

https://arxiv.org/abs/1609.05473
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Oracle LSTM with N(0,1) as real distribution

Yu et al. “SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient“ AAAI 2017.

https://arxiv.org/abs/1609.05473


Discrete GAN -  Rationale
● Similar to SeqGAN
● Back-propagation difficulties with discrete random variables
● Inherent instability of GAN training objective

Che et al, “MLE Augmented Discrete GAN”

https://docs.google.com/presentation/d/1nvErwMHCsRQNyIZPpBB32WX8IIFijW9QRq2D6AlN4vY/edit#slide=id.p


Approach
● Discrete problem - RL by using log(D) as reward
● Maximum likelihood along with discriminator as training signals
● Novel generator training objective that reduces variance
● Importance sampling to make objective trainable

Che et al, “MLE Augmented Discrete GAN”

https://docs.google.com/presentation/d/1nvErwMHCsRQNyIZPpBB32WX8IIFijW9QRq2D6AlN4vY/edit#slide=id.p


MLE Augmented Discrete GAN (MaliGAN)
● Delayed copy of generator

● Optimal discriminator property  

● q target distribution for MLE =

● Let

● Augmented target distribution:

● Regarding q as fixed, target to optimize is

● From importance sampling:    

Che et al, “MLE Augmented Discrete GAN”

https://docs.google.com/presentation/d/1nvErwMHCsRQNyIZPpBB32WX8IIFijW9QRq2D6AlN4vY/edit#slide=id.p


Che et al, “MLE Augmented Discrete GAN”
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Variance Reduction in MaliGAN
● MC Tree Search (similar to SeqGAN)
● Mixed MLE-Mali Training

Che et al, “MLE Augmented Discrete GAN”

https://docs.google.com/presentation/d/1nvErwMHCsRQNyIZPpBB32WX8IIFijW9QRq2D6AlN4vY/edit#slide=id.p
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Che et al, “MLE Augmented Discrete GAN”
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DNA Sequence Generation

92
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3D GAN
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Reconstruction from lower dimensions
● Transformation into higher dimension using data from lower dimension

● Protein synthesis
● 3D Scene reconstruction from 2D projection
● Image super-resolution

95
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Yu et al. 3D-SCENE-GAN: Three-Dimensional  Scene Reconstruction with Generative Adversarial Networks. ICLR 2018
101
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Behnam Neyshabur, Srinadh Bhojanapalli, and Ayan Chakrabarti. Stabilizing gan training with multiple random projections.2017.
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Reconstruction from lower dimensions - AmbientGAN

Bora et al. “AmbientGAN: Generative models from lossy measurements” ICLR 2018 
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AmbientGAN - Introduction
● Problem: current GAN techniques require access to fully-observed samples.
● Fully observed samples are required for training but are expensive.
● Task: learn implicit generative model given only lossy measurements of 

samples from the distribution of interest.
○ Lossy measurements = noisy/distorted/incomplete samples
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Related Work
● David Berthelot, Tom Schumm, and Luke Metz. Began: Boundary equilibrium 

generative adversarial networks. 2017. Link
● Low dimensional projections of data:

○ Matheus Gadelha, Subhransu Maji, and Rui Wang. 3d shape induction from 2d views of 
multiple objects. 2016. Link

○ Behnam Neyshabur, Srinadh Bhojanapalli, and Ayan Chakrabarti. Stabilizing gan training with 
multiple random projections. arXiv preprint arXiv:1705.07831, 2017. Link

● Maya Kabkab, Pouya Samangouei, Rama Chellappa. Task-Aware 
Compressed Sensing with Generative Adversarial Networks. Link

● GAN (Goodfellow) and WGAN for objective function.
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Approach
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Notation
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Approach
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Approach
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Model Architectures
● Conditional DCGAN
● Unconditional WGAN with gradient penalty
● Goodfellow GAN
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Theoretical Results
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Progressive Growing Generative Adversarial Nets
● Faster, more stable training methodology through progressive growing
● Image generation with unprecedented quality
● Propose simple way to increase variation in generated images
● Training tips for discouraging unhealthy competition between generator and 

discriminator
● Provide a new way of evaluating GAN results

Karas et al. “Progressive Growing of GANs for Improved Quality, Stability, and Variation”
117
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Progressive GAN - Previous Problems
● Gradient instability 
● Higher resolution makes generated images easier to tell apart from training 

images
● Memory constraints on higher resolutions
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Progressive GAN - Related Work
● Generating high-resolution images

○ Qifeng Chen and Vladlen Koltun. Photographic image synthesis with cascaded refinement 
networks. CoRR, abs/1707.09405, 2017. Link

○ Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis with 
auxiliary classifier GANs. In ICML, 2017. Link

● Growing GANs progressively 
○ Zhou Wang, Eero P. Simoncelli, and Alan C. Bovik. Multi-scale structural similarity for image 

quality assessment. In Proc. IEEE Asilomar Conf. on Signals, Systems, and Computers, pp. 
1398–1402, 2003. Link

○ Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaolei Huang, Xiaogang Wang, and 
Dimitris N. Metaxas. StackGAN: text to photo-realistic image synthesis with stacked 
generative adversarial networks. In ICCV, 2017. Link

○ Arnab Ghosh, Viveka Kulharia, Vinay P. Namboodiri, Philip H. S. Torr, and Puneet Kumar 
Dokania. Multi-agent diverse generative adversarial networks. CoRR, abs/1704.02906, 2017. 
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Progressive GAN - Related Work Continued
● Solving gradient problems

○ Ishaan Gulrajani, Faruk Ahmed, Mart ́ın Arjovsky, Vincent Dumoulin, and Aaron C. Courville. 
Improved training of Wasserstein GANs. CoRR, abs/1704.00028, 2017. Link

○ Martin Arjovsky and Leon Bottou. Towards principled methods for training generative 
adversarial ´ networks. In ICLR, 2017. Link

● Measuring GAN performance
○ Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi 

Chen. Improved techniques for training GANs. In NIPS, 2016. Link
○ MS-SSIM: Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image 

synthesis with auxiliary classifier GANs. In ICML, 2017. Link
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Progressive GAN - Method
● Start with low-resolution images
● Progressively increase resolution by adding network layers
● Learn high level structure first, then detail
● Benefits:

○ Reduced training time
○ Substantially more stable training, especially early with smaller images
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Progressive GAN - Increasing Variation
● Minibatch standard deviation
● Compute the standard deviation for each feature in each spatial location over 

the minibatch
● Create a constant feature map using the average of these estimates
● Allows the discriminator to use these statistics internally, encourages 

minibatches to show similar statistics
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Progressive GAN - Example Training Configuration
● Start with 4x4 resolution, train with 800k real images
● Then alternate:

○ Fade in the first 3-later block for the next 800k images
○ Stabilize with 800k images

● Upsampling with 2x2 pixel replication
● Downsampling with average pooling
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Progressive GAN - Results
● CIFAR10 Inception Score: 8.80
● High quality images from different LSUN categories
● Able to generate 1024x1024 images from CelebA-HQ
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