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Background: Collobert & Weston (2008/2011)

● Improved the objective function and 
removed expensive softmax layer

● CNNs + tagging → semantic 
embeddings

● Showed that learned embeddings 
could be useful for downstream tasks
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Popular Embedding Tools

● Word2vec (Mikolov, 2013)
● GloVe (Pennington, 2014)
● fastTest (Facebook, 2015)

Common Issues:

● Slow fully-connected layers
● Limited to text sequences
● Can we embed, say, documents and labels in 

a common vector space?
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● Improve upon word2vec, fastText, and GloVe
● Generalizable ML: “Embed all the things”--not just text

○ Documents, words, sentences, labels, users, items to recommend to 
users, images

● Embed entities of “Type A” with related entities of “Type B”
● Provide good (not necessarily best) performance for many tasks
● StarSpace can be a goto baseline; tool you can try out on lots of 

problems
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● Entity: words, sentences, documents, users, images, labels, etc.
● Old way: words represented as a single word ID
● Raw sentence: [huge iceberg in Greenland] → [60, 100, 4, 55]
● Embedding(wi) = LookupTable[i] = [ϴi1, ϴi2, …, ϴi300]T

● StarSpace: entities are bags-of-features (sets of feature ID’s)
● Entity a = [60, 100, 4, 55]
● Embedding(a) = LookupTable[60] + ... + LookupTable[55]
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Embedding(a) = 
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● Embed “Type A” entities and “Type B” entities in the same 
vector space
○ (a, b) = (document, label)
○ (a, b) = (user, item to recommend)
○ (a, b) = (sentence, sentence)

● Document: bag of words
● Label: singleton feature (a word)
● User: bag of items they’ve liked
● Item to recommend: single feature (e.g., a Facebook page)
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Results

● StarSpace vs fastText on Wikipedia dataset
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● StarSpace word and sentence-level models individually 
underperformed compared to word2vec and GloVe
○ Word2vec or GloVe had higher accuracy for 8/10 tests

● Word + sentence models did better
● Ensemble word Best accuracy for 4 of the tests+ sentence often even 

better
○ Best accuracy for 4/10 tests

Results (10 tasks)
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Conclusions

● StarSpace allows greater generality and flexibility
● Succeeds at providing a reasonable baseline for many problems
● Not very efficient--doesn’t use hierarchical classification
● Discrete features, not continuous features


