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Background: Neural Language Models

Pr[w|context] = Priw|w,_;, w,_,,.cc, w_ ]

e Impractical--extremely
expensive fully-connected
softmax layer

e |earned embeddings not
transferable to other tasks
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Background: Collobert & Weston (2008, 2011)
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Background: Collobert & Weston (2008/2011)

Improved the objective function and
removed expensive softmax layer
CNNs + tagging = semantic
embeddings
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Background: Collobert & Weston (2008/2011)

Input Window / word of intere
Text cat sat on the mat

e Improved the objective function and e Or i —
removed expensive softmax layer Featﬁ.reK ol wf Wk
e CNNs +tagging = semantic L?;‘:p'!j\*j: H H W H H
embeddings e —
e Showed that learned embeddings

could be useful for downstream tasks




Popular Embedding Tools

Word2vec (Mikolov, 2013)
GloVe (Pennington, 2014)
fastTest (Facebook, 2015)
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Popular Embedding Tools

Country and Capital Vectors Projected by PCA

e Word2vec (Mikolov, 2013) i s
e GloVe (Pennington, 2014) il i o
e fastTest (Facebook, 2015)

Common Issues: o
e Slow fully-connected layers P

e Limited to text sequences i I I A N N

e Can we embed, say, documents and labels in
a common vector space?
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Motivation of StarSpace

e Improve upon word2vec, fastText, and GloVe

e Generalizable ML: “Embed all the things”--not just text
o Documents, words, sentences, labels, users, items to recommend to
users, images

e Embed entities of “Type A” with related entities of “Type B”

e Provide good (not necessarily best) performance for many tasks

e StarSpace can be a goto baseline; tool you can try out on lots of
problems
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Entities in StarSpace

e Entity: words, sentences, documents, users, images, labels, etc.
e Old way: words represented as a single word ID

e Raw sentence: [huge iceberg in Greenland] = [60, 100, 4, 55]

e Embedding(w)=LookupTable[i]=[©.,0.,...0, '

e StarSpace: entities are bags-of-features (sets of feature ID’s)

e Entity a=[60, 100, 4, 55]

e Embedding(a) = LookupTable[60] + ... + LookupTable[55]
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Entities in StarSpace

e Embed “Type A” entities and “Type B” entities in the same
vector space

o (a, b)=(document, label) [g'm“g I““ll . @]
o (a, b) = (user, item to recommend)
o (a, b) = (sentence, sentence)
Document: bag of words
Label: singleton feature (a word)
User: bag of items they’ve liked
ltem to recommend: single feature (e.qg., a Facebook page)
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Results

e StarSpace vs fastText on Wikipedia dataset

Metric Hits@1 | Hits@10 | Hits@20 | Mean Rank | Training Time
Unsupervised methods ]
TFIDF 24719% | 35.53% | 38.25% 2523.68 -
fastText (public Wikipedia model) 5.77% 14.08% 17.79% 2393.38 -
fastText (our dataset) 5.47% 13.54% 17.60% 2363.74 40h
StarSpace (word-level training) 5.89% 16.41% | 20.60% 1614.21 45h
Supervised methods

SVM Ranker BoW features 26.36% | 36.48% | 39.25% 2368.37 -
SVM Ranker: fastText features (public) | 5.81% 12.14% 15.20% 1442.05 -
StarSpace (sentence pair training) 30.07% | 50.89% | 57.60% 422.00 36h
StarSpace (word+sentence training) 25.54% | 45.21% | 52.08% 484.27 6%5h
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Results (10 tasks)

e StarSpace word and sentence-level models individually

underperformed compared to word2vec and GloVe
o  Word2vec or GloVe had higher accuracy for 8/10 tests

e Word + sentence models did better

e Ensemble word Best accuracy for 4 of the tests+ sentence often even

better
o Best accuracy for 4/10 tests
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Conclusions

e StarSpace allows greater generality and flexibility

e Succeeds at providing a reasonable baseline for many problems
e Not very efficient--doesn’t use hierarchical classification

e Discrete features, not continuous features



