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Exact Solutions

● Linear search: O(nd), where n = |P|
● Voronoi diagrams/Delaunay triangulation for d = 2 -- O(logn) 

querytime
● kd-Trees and other partitioning trees

○ BSP-trees (binary space partitions)
○ R-Trees (overlapping boxes)
○ Ball trees (partition into hyperspheres)
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Exact Solutions: kd-Trees

● Linear once roughly d > 20



Approximate Nearest Neighbor (ANN)

1. Partitioning Trees (kd-Trees, etc.)
2. Locality Sensitive Hashing
3. Nearest Neighbor Graphs
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Partitioning Trees

● All are different flavors of using a BST for point location
● Kd-trees, BSP-trees, R-trees, ball trees, etc.
● Randomly perturb query point and return the point whose 

cell the query lands in
● Randomized forests, with trees searched in parallel
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Kd-Tree Random Forests

● Build multiple randomized kd-Trees and search them in 
parallel

● Splitting dimension sampled from top N dimensions for 
each remaining subset whenever a split is made

● Single priority queue shared among all trees
● Ordered by increasing distance to decision boundary
● Mitigates tendency of tree search to become linear as d 

increases
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kd-Tree Random Forests



Locality Sensitive Hashing



Nearest Neighbor Graphs
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Motivation

● Lots of different ANN algos
● Which ones tend to work the best?
● Introduce a new algo that tends to work well
● Create an ANN library for C++: FLANN
● Automatic algo selection
● Distributing ANN with compute clusters and map reduce
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Priority Search K-Means Tree

● Based on K-means clustering
● Uses full distance metric for partitioning, rather than using one 

dimension at a time
● Goal: better exploit distribution/structure of data points in P
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Priority K-means Tree Querying



Time Complexity

Construction Query

Randomized kd-tree O(ndK*logkn) Expected O(dlogn)

Priority k-means tree Single level: O(ndKI)
Total tree: O(ndKI*logkn),

where I = max iterations for 
k-means clustering

At each level, finding closest 
centroid: O(Kd)

Traversal: O(dlogkn)
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Conclusions and Take-Aways

● Different ANN algos work better for different datasets
● If data is naturally distributed into clusters → k-means tree
● Strong correlations between features → kd-Trees
● Generally, search tree-based algos are the most scalable
● A lot of potential for LSH; difficult obtaining good hash functions
● Large scale ANN is a “big data” problem

○ Want good performance? Distribute with compute clusters and Map 
Reduce



FLANN

● Fast Library for Approximate Nearest Neighbor
● C++ source code
● Contains implementations of a bunch of nearest neighbor 

algos
● Included in the OpenCV package
● Very fast
● But has bugs, finicky, hard to use
● Annoy is more popular and is recommended by Radim 

Rehurek (Gensim creator)



● Randomized forest of BSP-Trees
● Instead of splitting subsets based on a particular dimension it:
● Samples two points from the subset
● The boundary is chosen as the hyperplane equidistant from the two points
● Repeat the above k times (hyperparameter for making speed-precision 

tradeoffs)

Annoy



What ANN Library Should We Use?

● See Gensim creator Radim Řehůřek's comparison
● FLANN is extremely fast (0.20-0.30 ms/query), but has bugs (reported 4 years 

ago but still unfixed), and is difficult to use
● Annoy is slower (6-7 ms/query), but much more usable; Radim declares it the 

“winner”
● LSH implementations (e.g., Yahoo, NearPy) very finicky; problem surrounding 

finding good hash functions; very low recall (~2 approx nearest neighbors per 
query)

● Important note: embedding spaces have clusters and linear substructure
● ⇒ Trying out Annoy for the time being

https://rare-technologies.com/performance-shootout-of-nearest-neighbours-querying/

