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Input: Set of points P, d dimensions,

Output: Nearest neighbor p*
and query g
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Exact Solutions

e Linear search: O(nd), where n = |P|
e Voronoi diagrams/Delaunay triangulation for d = 2 -- O(logn)
querytime
e kd-Trees and other partitioning trees
- BSP-trees (binary space partitions)
o R-Trees (overlapping boxes)
o Ball trees (partition into hyperspheres)
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Exact Solutions: kd-Trees

e Linear once roughly d > 20




Approximate Nearest Neighbor (ANN)

1. Partitioning Trees (kd-Trees, etc.)
2. Locality Sensitive Hashing
3. Nearest Neighbor Graphs
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Partitioning Trees

e All are different flavors of using a BST for point location
e Kd-trees, BSP-trees, R-trees, ball trees, etc.

e Randomly perturb query point and return the point whose
cell the query lands in

e Randomized forests, with trees searched in parallel
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Kd-Tree Random Forests

Build multiple randomized kd-Trees and search them in
parallel

Splitting dimension sampled from top N dimensions for
each remaining subset whenever a split is made

Single priority queue shared among all trees

Ordered by increasing distance to decision boundary
Mitigates tendency of tree search to become linear as d
increases
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kd-Tree Random Forests




Locality Sensitive Hashing

Bucket 1

Bucket 2

O

Bucket 3

Bucket 4

Hashing Key Space

Bucket 5




Nearest Neighbor Graphs
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Motivation

Lots of different ANN algos

Which ones tend to work the best?

Introduce a new algo that tends to work well

Create an ANN library for C++: FLANN

Automatic algo selection

Distributing ANN with compute clusters and map reduce
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Priority Search K-Means Tree

e Based on K-means clustering

e Uses full distance metric for partitioning, rather than using one
dimension at a time

e Goal: better exploit distribution/structure of data points in P
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Priority K-means Tree Querying




Time Complexity

Randomized kd-tree

Priority k-means tree

Construction

O(ndK*log,n)

Single level: O(ndKI)
Total tree: O(ndKl*log,n),
where | = max iterations for
k-means clustering

Query

Expected O(dlogn)

At each level, finding closest
centroid: O(Kd)
Traversal: O(dlog,n)
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Speedup over linear search
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Conclusions and Take-Aways

e Different ANN algos work better for different datasets

e If data is naturally distributed into clusters = k-means tree

e Strong correlations between features = kd-Trees

e Generally, search tree-based algos are the most scalable

e A lot of potential for LSH; difficult obtaining good hash functions

e Large scale ANN is a “big data” problem
o Want good performance? Distribute with compute clusters and Map
Reduce



FLANN

e Fast Library for Approximate Nearest Neighbor

e (++ source code

Contains implementations of a bunch of nearest neighbor
algos

Included in the OpenCV package

Very fast

But has bugs, finicky, hard to use

Annoy is more popular and is recommended by Radim
Rehurek (Gensim creator)




Annoy

Randomized forest of BSP-Trees

Instead of splitting subsets based on a particular dimension it:

Samples two points from the subset

The boundary is chosen as the hyperplane equidistant from the two points
Repeat the above k times (hyperparameter for making speed-precision
tradeoffs)

@ Spotify




What ANN Library Should We Use?

e See Gensim creator Radim Reh(itek's comparison

e FLANN is extremely fast (0.20-0.30 ms/query), but has bugs (reported 4 years
ago but still unfixed), and is difficult to use

e Annoy is slower (6-7 ms/query), but much more usable; Radim declares it the
“winner”

e LSH implementations (e.g., Yahoo, NearPy) very finicky; problem surrounding
finding good hash functions; very low recall (Y2 approx nearest neighbors per

query)
e Important note: embedding spaces have clusters and

e = Trying out Annoy for the time being @ Spotify



https://rare-technologies.com/performance-shootout-of-nearest-neighbours-querying/

