Scalable Nearest Neighbor Algorithms for High Dimensional Data
Marius Muja (UBC), David G. Lowe (Google)
IEEE
2014

Presenter: Derrick Blakely
Department of Computer Science, University of Virginia
https://qdata.github.io/deep2Read/
Roadmap

1. Background

2. Motivation

3. Scalable Nearest Neighbor Algorithms for High Dimensional Data

4. Results

5. Conclusion and Take-Aways
Roadmap

1. Background

2. Motivation

3. Scalable Nearest Neighbor Algorithms for High Dimensional Data

4. Results

5. Conclusion and Take-Aways
Nearest Neighbor Search

Input: Set of points P, d dimensions, and query q
Nearest Neighbor Search

Input: Set of points P, d dimensions, and query q

Output: Nearest neighbor p*
Exact Solutions

- Linear search: $O(nd)$, where $n = |P|$
Exact Solutions

- Linear search: $O(nd)$, where $n = |P|$
- Voronoi diagrams/Delaunay triangulation for $d = 2$ -- $O(\log n)$ querytime
Exact Solutions

- Linear search: $O(nd)$, where $n = |P|$
- Voronoi diagrams/Delaunay triangulation for $d = 2$ -- $O(\log n)$ querytime
- kd-Trees and other partitioning trees
Exact Solutions

- Linear search: $O(nd)$, where $n = |P|$
- Voronoi diagrams/Delaunay triangulation for $d = 2$ -- $O(\log n)$ querytime
- kd-Trees and other partitioning trees
 - BSP-trees (binary space partitions)
Exact Solutions

- Linear search: $O(nd)$, where $n = |P|$
- Voronoi diagrams/Delaunay triangulation for $d = 2$ -- $O(\log n)$ querytime
- kd-Trees and other partitioning trees
 - BSP-trees (binary space partitions)
 - R-Trees (overlapping boxes)
Exact Solutions

- Linear search: $O(nd)$, where $n = |P|$
- Voronoi diagrams/Delaunay triangulation for $d = 2$ -- $O(\log n)$ querytime
- kd-Trees and other partitioning trees
 - BSP-trees (binary space partitions)
 - R-Trees (overlapping boxes)
 - Ball trees (partition into hyperspheres)
Exact Solutions: kd-Trees

- Linear once roughly $d > 20$
Approximate Nearest Neighbor (ANN)

1. Partitioning Trees (kd-Trees, etc.)
2. Locality Sensitive Hashing
3. Nearest Neighbor Graphs
Partitioning Trees

- All are different flavors of using a BST for point location
Partitioning Trees

- All are different flavors of using a BST for point location
- Kd-trees, BSP-trees, R-trees, ball trees, etc.
Partitioning Trees

- All are different flavors of using a BST for point location
- Kd-trees, BSP-trees, R-trees, ball trees, etc.
- Randomly perturb query point and return the point whose cell the query lands in
Partitioning Trees

- All are different flavors of using a BST for point location
- Kd-trees, BSP-trees, R-trees, ball trees, etc.
- Randomly perturb query point and return the point whose cell the query lands in
- Randomized forests, with trees searched in parallel
Kd-Tree Random Forests

- Build multiple randomized kd-Trees and search them in parallel
Kd-Tree Random Forests

- Build multiple randomized kd-Trees and search them in parallel
- Splitting dimension sampled from top N dimensions for each remaining subset whenever a split is made
Kd-Tree Random Forests

- Build multiple randomized kd-Trees and search them in parallel
- Splitting dimension sampled from top N dimensions for each remaining subset whenever a split is made
- Single priority queue shared among all trees
Kd-Tree Random Forests

- Build multiple randomized kd-Trees and search them in parallel
- Splitting dimension sampled from top N dimensions for each remaining subset whenever a split is made
- Single priority queue shared among all trees
- Ordered by increasing distance to decision boundary
Kd-Tree Random Forests

- Build multiple randomized kd-Trees and search them in parallel
- Splitting dimension sampled from top N dimensions for each remaining subset whenever a split is made
- Single priority queue shared among all trees
- Ordered by increasing distance to decision boundary
- Mitigates tendency of tree search to become linear as d increases
kd-Tree Random Forests
kd-Tree Random Forests
Locality Sensitive Hashing
Nearest Neighbor Graphs
Roadmap

1. Background
2. Motivation
3. Scalable Nearest Neighbor Algorithms for High Dimensional Data
4. Results
5. Conclusion and Take-Aways
Roadmap

1. Background

2. Motivation

3. Scalable Nearest Neighbor Algorithms for High Dimensional Data

4. Results

5. Conclusion and Take-Aways
Motivation

● Lots of different ANN algos
Motivation

- Lots of different ANN algos
- Which ones tend to work the best?
Motivation

- Lots of different ANN algos
- Which ones tend to work the best?
- Introduce a new algo that tends to work well
Motivation

● Lots of different ANN algos
● Which ones tend to work the best?
● Introduce a new algo that tends to work well
● Create an ANN library for C++: FLANN
Motivation

- Lots of different ANN algos
- Which ones tend to work the best?
- Introduce a new algo that tends to work well
- Create an ANN library for C++: FLANN
- Automatic algo selection
Motivation

- Lots of different ANN algos
- Which ones tend to work the best?
- Introduce a new algo that tends to work well
- Create an ANN library for C++: FLANN
- Automatic algo selection
- Distributing ANN with compute clusters and map reduce
Roadmap

1. Background
2. Motivation
3. Scalable Nearest Neighbor Algorithms for High Dimensional Data
4. Results
5. Conclusion and Take-Aways
Roadmap

1. Background
2. Motivation
3. Scalable Nearest Neighbor Algorithms for High Dimensional Data
4. Results
5. Conclusion and Take-Aways
Priority Search K-Means Tree

- Based on K-means clustering
Priority Search K-Means Tree

- Based on K-means clustering
- Uses full distance metric for partitioning, rather than using one dimension at a time
Priority Search K-Means Tree

- Based on K-means clustering
- Uses full distance metric for partitioning, rather than using one dimension at a time
- Goal: better exploit distribution/structure of data points in P
Priority K-means Tree Construction
Priority K-means Tree Querying
Time Complexity

<table>
<thead>
<tr>
<th></th>
<th>Construction</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomized kd-tree</td>
<td>$O(ndK^\log_k n)$</td>
<td>Expected $O(d\log n)$</td>
</tr>
</tbody>
</table>
| **Priority k-means tree** | Single level: $O(ndKI)$
Total tree: $O(ndKI^\log_k n)$, where $I = \text{max iterations for } k$-means clustering | At each level, finding closest centroid: $O(Kd)$
Traversal: $O(d\log_k n)$ |
Roadmap

1. Background

2. Motivation

3. Scalable Nearest Neighbor Algorithms for High Dimensional Data

4. Results

5. Conclusion and Take-Aways
Roadmap

1. Background
2. Motivation
3. Scalable Nearest Neighbor Algorithms for High Dimensional Data
4. Results
5. Conclusion and Take-Aways
Results
Roadmap

1. Background
2. Motivation
3. Scalable Nearest Neighbor Algorithms for High Dimensional Data
4. Results
5. Conclusion and Take-Aways
Roadmap

1. Background
2. Motivation
3. Scalable Nearest Neighbor Algorithms for High Dimensional Data
4. Results
5. Conclusion and Take-Aways
Conclusions and Take-Aways

- Different ANN algos work better for different datasets
Conclusions and Take-Aways

- Different ANN algos work better for different datasets
- If data is naturally distributed into clusters → k-means tree
Conclusions and Take-Aways

- Different ANN algos work better for different datasets
- If data is naturally distributed into clusters ➔ k-means tree
- Strong correlations between features ➔ kd-Trees
Conclusions and Take-Aways

● Different ANN algos work better for different datasets
● If data is naturally distributed into clusters ➔ k-means tree
● Strong correlations between features ➔ kd-Trees
● Generally, search tree-based algos are the most scalable
Conclusions and Take-Aways

- Different ANN algos work better for different datasets
- If data is naturally distributed into clusters → k-means tree
- Strong correlations between features → kd-Trees
- Generally, search tree-based algos are the most scalable
- A lot of potential for LSH; difficult obtaining good hash functions
Conclusions and Take-Aways

- Different ANN algos work better for different datasets
- If data is naturally distributed into clusters ➔ k-means tree
- Strong correlations between features ➔ kd-Trees
- Generally, search tree-based algos are the most scalable
- A lot of potential for LSH; difficult obtaining good hash functions
- Large scale ANN is a “big data” problem
 - Want good performance? Distribute with compute clusters and Map Reduce
FLANN

- Fast Library for Approximate Nearest Neighbor
- C++ source code
- Contains implementations of a bunch of nearest neighbor algos
- Included in the OpenCV package
- Very fast
- But has bugs, finicky, hard to use
- Annoy is more popular and is recommended by Radim Rehurek (Gensim creator)
Annoy

- Randomized forest of BSP-Trees
- Instead of splitting subsets based on a particular dimension it:
 - Samples two points from the subset
 - The boundary is chosen as the hyperplane equidistant from the two points
- Repeat the above k times (hyperparameter for making speed-precision tradeoffs)
What ANN Library Should We Use?

- See Gensim creator Radim Řehůřek's comparison
- FLANN is extremely fast (0.20-0.30 ms/query), but has bugs (reported 4 years ago but still unfixed), and is difficult to use
- Annoy is slower (6-7 ms/query), but much more usable; Radim declares it the “winner”
- LSH implementations (e.g., Yahoo, NearPy) very finicky; problem surrounding finding good hash functions; very low recall (~2 approx nearest neighbors per query)
- Important note: embedding spaces have clusters and
- ⇒ Trying out Annoy for the time being