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2. Local context window methods

● Bengio 2003, C&W 2008/2011, skip-gram & CBOW (aka 
word2vec)
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● Co-occurrence counts ≈ “latent semantics”
● Latent semantic analysis (LSA):

1. SVD factorization: C = UΣVT

2. Low-rank approximation: Ck = UΣkV
T

● Good approximation: the largest k eigenvalues matter a lot more 
than the smaller ones

● Useful for semantics: Ck models co-occurrence counts
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doc1 doc2 doc3 doc4 doc5 doc6

ship 1 0 1 0 0 0

boat 0 1 0 0 0 0

ocean 1 1 0 0 0 0

voyage 1 0 0 1 1 0

trip 0 0 0 1 0 1

<doc1, doc2> = 1*0 + 0*1 + 1*1 + 1*0 + 0*0 = 1
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doc1 doc2 doc3 doc4 doc5 doc6

-1.62 -0.6 -0.44 -0.97 -0.7 -0.26

-0.46 -0.84 -0.30 1 0.35 0.65

<doc1, doc2> = (-1.62)(-0.6) + (-0.46)(-0.84) = 1.36
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Matrix Factorization Methods

● Term-term matrix methods: HAL, COALS, PPMI, HPCA
● Takes advantage of global corpus stats
● Not the best approach for word embeddings (but often a 

reasonable baseline)
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Local Context Window Methods

● Bengio, 2003 - neural language 
model

● Learning word representations 
stored lookup table/matrix or 
network weights



Word2Vec (Mikolov, 2013)

● CBOW
● Skip-gram
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Local Context Window Methods

● Tailored to the task of learning useful embeddings
● Explicitly penalize models that poorly predict contexts given 

words (or words given contexts)
● Don’t utilize global corpus statistics
● Intuitively, a more globally-aware model should be able to do 

better
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Linear Substructure

● Want to “capture the meaningful linear substructures” prevalent 
in the embedding space

● Analogy tasks reflect linear relationships between words in the 
embedding space.

Paris - France + Germany = Berlin
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Motivation

● Learn embeddings useful for downstream tasks and outperform 
word2vec

● Take advantage of global stats
● Analogies need linear substructure 
● Embedding algos should exploit this substructure
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Observation 1: Linear Substructure

● Analogy property is linear
● Vector differences seem to encode concepts
● Man – woman should encode concept of gender
● France – Germany should encode them being different 

countries



Co-occurrence Matrix

X

N = |V|

N
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Co-occurrence Matrix

X

Wk = Paris

Wa = France

Wb = Germany

Xak = Num 
times k appear 
in contexts with 
a

Xa = Num 
contexts with a
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Observation 2: Co-Occurrence Ratios Matter
k = paris k = berlin k = europe k = ostrich

Pr[k | france] large small large small

Pr[k | germany] small large large small

Pr[k | france]/
Pr[k | germany]

large small ≈ 1 ≈ 1
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GloVe

● Model using a loss function that leverages:
1. Global co-occurrence counts and their ratios
2. Linear substructure for analogies

● Software package to build embedding models
● Downloadable pre-trained word vectors created using a massive 

corpus
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Deriving the GloVe model

● Co-occurrence values in matrix X should be the starting point

● Suppose F(france, germany, paris) = small
● → update the vectors
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Factoring in Vector Differences

● The difference between the France and Germany vectors is 
what matters with w.r.t analogies
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Performance on Analogy Tasks

● Semantic: “Paris is France as Berlin is to ____”
● Syntactic: “Fly is to flying as dance is to ____”



Performance on Analogy Tasks

Model Dimensions Corpus Size Semantic Syntactic Total

CBOW 1000 6B 57.3 68.9 63.7

Skip-Gram 1000 GB 66.1 65.1 65.6

SVD-L 300 42B 38.4 58.2 49.2

GloVe 300 42B 81.9 69.3 75.0



Speed
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Conclusion and Take-Aways

● Embeddings algos all take advantage of co-occurrence stats
● Leveraging global stats can provide performance boost
● Keep the linear substructure in mind when designing 

embedding algorithms
● Simpler models can work well (SVD-L performed very well)
● More iterations seems to be most important for embedding 

models: 
● faster iterations → train on a larger corpus → create better 

embeddings
● Demonstrated by word2vec, GloVe, and SVD-L



Questions?


