GloVe: Global Vectors for Word Representation Jeffrey Pennington, Richard Socher, Christopher D. Manning *Stanford EMNLP 2014

Presenter: Derrick Blakely

Department of Computer Science, University of Virginia https://qdata.github.io/deep2Read/

Roadmap

- 1. Background
- 2. Motivation of GloVe
- 3. What is GloVe? How does it work?
- 4. Results
- 5. Conclusion and Take-Aways

Roadmap

- 1. Background
- 2. Motivation of GloVe
- 3. What is GloVe?
- 4. Results
- 5. Conclusion and Take-Aways

Word Embedding Algos

- 1. Matrix factorization methods
 - LSA, HAL, PPMI, HPCA

Word Embedding Algos

- 1. Matrix factorization methods
 - LSA, HAL, PPMI, HPCA
- 2. Local context window methods
 - Bengio 2003, C&W 2008/2011, skip-gram & CBOW (aka word2vec)

• Co-occurrence counts ≈ "latent semantics"

- Co-occurrence counts ≈ "latent semantics"
- Latent semantic analysis (LSA):
 - 1. SVD factorization: $C = U\Sigma V^T$
 - 2. Low-rank approximation: $C_k = U\Sigma_k V^T$

- Co-occurrence counts ≈ "latent semantics"
- Latent semantic analysis (LSA):
 - 1. SVD factorization: $C = U\Sigma V^{T}$
 - 2. Low-rank approximation: $C_k = U\Sigma_k V^T$
- Good approximation: the largest k eigenvalues matter a lot more than the smaller ones

- Co-occurrence counts ≈ "latent semantics"
- Latent semantic analysis (LSA):
 - 1. SVD factorization: $C = U\Sigma V^{T}$
 - 2. Low-rank approximation: $C_k = U\Sigma_k V^T$
- Good approximation: the largest k eigenvalues matter a lot more than the smaller ones
- Useful for semantics: C_k models co-occurrence counts

LSA

	doc1	doc2	doc3	doc4	doc5	doc6
ship	1	0	1	0	0	0
boat	0	1	0	0	0	0
ocean	1	1	0	0	0	0
voyage	1	0	0	1	1	0
trip	0	0	0	1	0	1

LSA

	doc1	doc2	doc3	doc4	doc5	doc6
ship	1	0	1	0	0	0
boat	0	1	0	0	0	0
ocean	1	1	0	0	0	0
voyage	1	0	0	1	1	0
trip	0	0	0	1	0	1

<doc1, doc2> = 1 * 0 + 0 * 1 + 1 * 1 + 1 * 0 + 0 * 0 = <u>1</u>

LSA

doc1	doc2	doc3	doc4	doc5	doc6
-1.62	-0.6	-0.44	-0.97	-0.7	-0.26
-0.46	-0.84	-0.30	1	0.35	0.65

<doc1, doc2> = (-1.62)(-0.6) + (-0.46)(-0.84) = <u>1.36</u>

doc1	doc2	doc3	doc4	doc5	doc6
-1.62	-0.6	-0.44	-0.97	-0.7	-0.26
-0.46	-0.84	-0.30	1	0.35	0.65

LSA

• Term-term matrix methods: HAL, COALS, PPMI, HPCA

- Term-term matrix methods: HAL, COALS, PPMI, HPCA
- Takes advantage of global corpus stats

- Term-term matrix methods: HAL, COALS, PPMI, HPCA
- Takes advantage of global corpus stats
- Not the best approach for word embeddings (but often a reasonable baseline)

Local Context Window Methods $Pr[w|context] = Pr[w_t|w_{t-1}, w_{t-2}, ..., w_{t-n+1}]$

Local Context Window Methods $Pr[w|context] = Pr[w_t|w_{t-1}, w_{t-2}, ..., w_{t-n+1}]$

 Bengio, 2003 - neural language model

Local Context Window Methods $Pr[w|context] = Pr[w_t|w_{t-1}, w_{t-2}, ..., w_{t-n+1}]$

- Bengio, 2003 neural language model
- Learning word representations stored lookup table/matrix or network weights

Word2Vec (Mikolov, 2013)

- CBOW
- Skip-gram

• Tailored to the task of learning useful embeddings

- Tailored to the task of learning useful embeddings
- Explicitly penalize models that poorly predict contexts given words (or words given contexts)

- Tailored to the task of learning useful embeddings
- Explicitly penalize models that poorly predict contexts given words (or words given contexts)
- Don't utilize global corpus statistics

- Tailored to the task of learning useful embeddings
- Explicitly penalize models that poorly predict contexts given words (or words given contexts)
- Don't utilize global corpus statistics
- Intuitively, a more globally-aware model should be able to do better

Good Embedding Spaces have Linear Substructure

Linear Substructure

• Want to "capture the <u>meaningful linear substructures</u>" prevalent in the embedding space

Linear Substructure

- Want to "capture the <u>meaningful linear substructures</u>" prevalent in the embedding space
- Analogy tasks reflect linear relationships between words in the embedding space.

Linear Substructure

- Want to "capture the <u>meaningful linear substructures</u>" prevalent in the embedding space
- Analogy tasks reflect linear relationships between words in the embedding space.

Paris - France + Germany = Berlin

Roadmap

- 1. Background
- 2. Motivation of GloVe
- 3. What is GloVe?
- 4. Results
- 5. Conclusion and Take-Aways

Roadmap

- 1. Background
- 2. Motivation of GloVe
- 3. What is GloVe?
- 4. Results
- 5. Conclusion and Take-Aways

 Learn embeddings useful for downstream tasks and outperform word2vec

- Learn embeddings useful for downstream tasks and outperform word2vec
- Take advantage of global stats

- Learn embeddings useful for downstream tasks and outperform word2vec
- Take advantage of global stats
- Analogies need linear substructure

- Learn embeddings useful for downstream tasks and outperform word2vec
- Take advantage of global stats
- Analogies need linear substructure
- Embedding algos should exploit this substructure

Observation 1: Linear Substructure

• Analogy property is linear

Observation 1: Linear Substructure

- Analogy property is linear
- Vector differences seem to encode concepts
Observation 1: Linear Substructure

- Analogy property is linear
- Vector differences seem to encode concepts
- Man woman should encode concept of gender

Observation 1: Linear Substructure

- Analogy property is linear
- Vector differences seem to encode concepts
- Man woman should encode concept of gender
- France Germany should encode them being different countries

N = |V|

X_{ak} = Num times *k* appear in contexts with *a*

 $X_a = Num$ contexts with *a*

	k = paris
Pr[k france]	large
Pr[k germany]	small
Pr[k france]/ Pr[k germany]	large

	k = paris	k = berlin
Pr[k france]	large	small
Pr[k germany]	small	large
Pr[k france]/ Pr[k germany]	large	small

	k = paris	k = berlin	k = europe
Pr[k france]	large	small	large
Pr[k germany]	small	large	large
Pr[k france]/ Pr[k germany]	large	small	∽1

	k = paris	k = berlin	k = europe	k = ostrich
Pr[k france]	large	small	large	small
Pr[k germany]	small	large	large	small
Pr[k france]/ Pr[k germany]	large	small	∽1	∽ 1

Roadmap

- 1. Background
- 2. Motivation of GloVe
- 3. What is GloVe?
- 4. Results
- 5. Conclusion and Take-Aways

Roadmap

- 1. Background
- 2. Motivation of GloVe
- 3. What is GloVe?
- 4. Results
- 5. Conclusion and Take-Aways

GloVe

- Model using a loss function that leverages:
 - 1. Global co-occurrence counts and their ratios
 - 2. Linear substructure for analogies

GloVe

- Model using a loss function that leverages:
 - 1. Global co-occurrence counts and their ratios
 - 2. Linear substructure for analogies
- Software package to build embedding models

GloVe

- Model using a loss function that leverages:
 - 1. Global co-occurrence counts and their ratios
 - 2. Linear substructure for analogies
- Software package to build embedding models
- Downloadable pre-trained word vectors created using a massive corpus

• Co-occurrence values in matrix X should be the starting point

• Co-occurrence values in matrix X should be the starting point

$$F(w_a, w_b, w_k) = \frac{P[k|a]}{P[k|b]} = \frac{X_{ak}/X_a}{X_{bk}/X_b}$$

• Co-occurrence values in matrix X should be the starting point

$$F(w_a, w_b, w_k) = \frac{P[k|a]}{P[k|b]} = \frac{X_{ak}/X_a}{X_{bk}/X_b}$$

• Suppose F(france, germany, paris) = *small*

• Co-occurrence values in matrix X should be the starting point

$$F(w_a, w_b, w_k) = \frac{P[k|a]}{P[k|b]} = \frac{X_{ak}/X_a}{X_{bk}/X_b}$$

- Suppose F(france, germany, paris) = *small*
- • update the vectors

Factoring in Vector Differences

• The difference between the France and Germany vectors is what matters with w.r.t analogies

Factoring in Vector Differences

• The difference between the France and Germany vectors is what matters with w.r.t analogies

$$F(w_a - w_b, w_k) = \frac{P[k|a]}{P[k|b]}$$

Real-Valued Input is Less Complicated

Real-Valued Input is Less Complicated

$$F((w_a - w_b)^T w_k) = F(w_a \bullet w_k - w_b \bullet w_k) = \frac{P[k|a]}{P[k|b]}$$

$$F((w_{a} - w_{b})^{T} w_{k}) = F(w_{a} \cdot w_{k} - w_{b} \cdot w_{k}) = \frac{P[k|a]}{P[k|b]}$$
Paris
France
Germany
Berlin

$$F(w_a \bullet w_k - w_b \bullet w_k) = \frac{P[k|a]}{P[k|b]} = \frac{exp(w_a \bullet w_k)}{exp(w_b \bullet w_k)}$$

$$F(w_a \bullet w_k - w_b \bullet w_k) = \frac{P[k|a]}{P[k|b]} = \frac{exp(w_a \bullet w_k)}{exp(w_b \bullet w_k)}$$
$$\implies$$
$$w_a \bullet w_k = log(P[k|a])$$

$$F(w_a \bullet w_k - w_b \bullet w_k) = \frac{P[k|a]}{P[k|b]} = \frac{exp(w_a \bullet w_k)}{exp(w_b \bullet w_k)}$$
$$\implies$$
$$w_a \bullet w_k = log(P[k|a])$$

$$= log(\frac{X_{ak}}{X_a})$$

$$F(w_a \bullet w_k - w_b \bullet w_k) = \frac{P[k|a]}{P[k|b]} = \frac{exp(w_a \bullet w_k)}{exp(w_b \bullet w_k)}$$
$$\implies w_a \bullet w_k = log(P[k|a])$$

$$= log(\frac{X_{ak}}{X_a})$$
$$= log(X_{ak}) - log(X_a)$$

$$F(w_a \bullet w_k - w_b \bullet w_k) = \frac{P[k|a]}{P[k|b]} = \frac{exp(w_a \bullet w_k)}{exp(w_b \bullet w_k)}$$

$$\implies$$

$$w_a \bullet w_k = log(P[k|a])$$

$$= log(\frac{X_{ak}}{X_a})$$

$$= log(X_{ak}) - log(X_a)$$

$$\implies w_a \cdot w_k + bias - log(X_{ak}) = 0$$

Least Squares Problem

Least Squares Problem

$$w_a \bullet w_k + bias - log(X_{ak}) = 0$$

Least Squares Problem

$$w_a \bullet w_k + bias - log(X_{ak}) = 0$$

 \Rightarrow

$$(w_i \cdot w_j + biases - log(X_{ij}))^2$$

Final GloVe Model

$$J = \sum_{i,j=1}^{V} f\left(X_{ij}\right) \left(w_i^T \tilde{w}_j + b_i + \tilde{b}_j - \log X_{ij}\right)^2$$

Final GloVe Model

$$J = \sum_{i,j=1}^{V} f\left(X_{ij}\right) \left(w_i^T \tilde{w}_j + b_i + \tilde{b}_j - \log X_{ij}\right)^2$$

- 1. Background
- 2. Motivation of GloVe
- 3. What is GloVe?
- 4. Results
- 5. Conclusion and Take-Aways

- 1. Background
- 2. Motivation of GloVe
- 3. What is GloVe?
- 4. Results
- 5. Conclusion and Take-Aways

Performance on Analogy Tasks

- Semantic: "Paris is France as Berlin is to _____"
- Syntactic: "Fly is to flying as dance is to _____"

Performance on Analogy Tasks

Model	Dimensions	Corpus Size	Semantic	Syntactic	Total
CBOW	1000	6B	57.3	68.9	63.7
Skip-Gram	1000	GB	66.1	65.1	65.6
SVD-L	300	42B	38.4	58.2	49.2
GloVe	300	42B	<u>81.9</u>	<u>69.3</u>	<u>75.0</u>

Speed

• Superior for analogy tasks; almost the same performance as word2vec and fastText for retrieval tasks

- Superior for analogy tasks; almost the same performance as word2vec and fastText for retrieval tasks
- Co-occurrence construction takes 1 hr +

- Superior for analogy tasks; almost the same performance as word2vec and fastText for retrieval tasks
- Co-occurrence construction takes 1 hr +
- Each training iterations takes 10 minutes +

- Superior for analogy tasks; almost the same performance as word2vec and fastText for retrieval tasks
- Co-occurrence construction takes 1 hr +
- Each training iterations takes 10 minutes +
- Not online

- Superior for analogy tasks; almost the same performance as word2vec and fastText for retrieval tasks
- Co-occurrence construction takes 1 hr +
- Each training iterations takes 10 minutes +
- Not online
- Doesn't allow different entities to be embedded (a la StarSpace)

- Superior for analogy tasks; almost the same performance as word2vec and fastText for retrieval tasks
- Co-occurrence construction takes 1 hr +
- Each training iterations takes 10 minutes +
- Not online
- Doesn't allow different entities to be embedded (a la StarSpace)

- 1. Background
- 2. Motivation of GloVe
- 3. What is GloVe?
- 4. Results
- 5. Conclusion and Take-Aways

- 1. Background
- 2. Motivation of GloVe
- 3. What is GloVe?
- 4. Results
- 5. Conclusion and Take-Aways

• Embeddings algos all take advantage of co-occurrence stats

- Embeddings algos all take advantage of co-occurrence stats
- Leveraging global stats can provide performance boost

- Embeddings algos all take advantage of co-occurrence stats
- Leveraging global stats can provide performance boost
- Keep the linear substructure in mind when designing embedding algorithms

- Embeddings algos all take advantage of co-occurrence stats
- Leveraging global stats can provide performance boost
- Keep the linear substructure in mind when designing embedding algorithms
- Simpler models can work well (SVD-L performed very well)

- Embeddings algos all take advantage of co-occurrence stats
- Leveraging global stats can provide performance boost
- Keep the linear substructure in mind when designing embedding algorithms
- Simpler models can work well (SVD-L performed very well)
- More iterations seems to be most important for embedding models:
- faster iterations → train on a larger corpus → create better embeddings
- Demonstrated by word2vec, GloVe, and SVD-L

Questions?