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1. Matrix factorization methods
e LSA, HAL, PPMI, HPCA

2. Local context window methods

e Bengio 2003, C&W 2008/2011, skip-gram & CBOW (aka
word2vec)
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Matrix Factorization Methods

e Latent semantic analysis (LSA):
1. SVD factorization: C = UZV'
2. Low-rank approximation: C = UZkVT
e Good approximation: the largest k eigenvalues matter a lot more
than the smaller ones
o Useful for semantics: C, models co-occurrence counts
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<doc1, doc2>=17"0+ 0"+ 1M +1*0 + 0*0 =1
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doc1 doc2 doc3 doc4 doc6
-1.62 -0.6 -0.44 -0.97 -0.26
-0.46 -0.84 -0.30 1 0.65

<docl, doc2> = (-1.62)(-0.6) + (-0.46)(-0.84) =
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Matrix Factorization Methods

e Term-term matrix methods: HAL, COALS, PPMI, HPCA
e Takes advantage of global corpus stats

e Not the best approach for word embeddings (but often a
reasonable baseline)
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Local Context Window Methods

Prw|context] = Priw,|w,_i, w,_5,.cc,, w,_, ]

i-th output = P(w; = i | contenxt)
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Word2Vec (Mikolov, 2013)
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Local Context Window Methods

e Tailored to the task of learning useful embeddings

e Explicitly penalize models that poorly predict contexts given
words (or words given contexts)

e Don't utilize global corpus statistics

e Intuitively, a more globally-aware model should be able to do
better



Good Embedding Spaces have Linear Substructure

Country and Capital Vectors Projected by PCA
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Linear Substructure

e Want to “capture the meaningful linear substructures” prevalent
in the embedding space

e Analogy tasks reflect linear relationships between words in the
embedding space.

Paris - France + Germany = Berlin
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Motivation

e Learn embeddings useful for downstream tasks and outperform
word2vec

e Take advantage of global stats

e Analogies need linear substructure

e Embedding algos should exploit this substructure
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Observation 1: Linear Substructure

e Analogy property is linear
e Vector differences seem to encode concepts
e Man — woman should encode concept of gender

e France — Germany should encode them being different
countries
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Co-occurrence Matrix
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Co-occurrence Matrix
Wk = Paris

l Xak = Num
times k appear
in contexts with
a

Wa = France

W, = Germany
Xa = Num
contexts with a
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GloVe

e Model using a loss function that leverages:
1. Global co-occurrence counts and their ratios
2. Linear substructure for analogies

e Software package to build embedding models

e Downloadable pre-trained word vectors created using a massive
corpus
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Deriving the GloVe model

e Co-occurrence values in matrix X should be the starting point

e Suppose F(france, germany, paris) = small
e = Update the vectors
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Factoring in Vector Differences

e The difference between the France and Germany vectors is
what matters with w.r.t analogies

P[]
F(wg —wy, wy) = PEkﬂ
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Real-Valued Input is Less Complicated

F((w, —wy) ka) =F(w,*w, — w,



F(w,—w,) ' w)=F(ws*w, — w, *w,)

France

Germany

Berlin
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Reframing with Softmax

Fwg*w, — wy *wp)=

P [k|b] exp(w, *w,)
—
wq * Wy = log(P [k|a])
= log(F*

= l0g(X ;) — log(X,)

= w; * w, +bias —log(X,)=0
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Least Squares Problem
Wq * W, +bias —log(X,) =0
—

(w; * w; + biases — log(Xij))2




Final GloVe Model

\%4

J = Z f (Xij) (W?Wj + bi + l;j — lOg Xij)z
i,j=1



Final GloVe Model
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Performance on Analogy Tasks

e Semantic: “Paris is France as Berlin is to

e Syntactic: “Fly is to flying as dance is to

2

2



Performance on Analogy Tasks

Model

CBOW

Skip-Gram

SVD-L

GloVe

Dimensions

1000
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Corpus Size

6B
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42B
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Semantic

57.3

66.1

38.4
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Total

63.7
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Conclusion and Take-Aways

e Embeddings algos all take advantage of co-occurrence stats

e Leveraging global stats can provide performance boost

e Keep the linear substructure in mind when designing
embedding algorithms

e Simpler models can work well (SVD-L performed very well)

e More iterations seems to be most important for embedding
models:

e faster iterations = train on a larger corpus = create better
embeddings

e Demonstrated by word2vec, GloVe, and SVD-L
D



Questions?



