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Cryptography and Machine Learning (1991)

e Author: Ronald Rivest

This paper gives a survey of the relationship between the fields of cryptography
and machine learning, with an emphasis on how each field has contributed ideas
and techniques to the other. Some suggested directions for future cross-fertilization
are also proposed.

e Look at Kearns [21]


https://people.csail.mit.edu/rivest/pubs/Riv91.pdf

Initial Comparison

e Cryptography produces examples of classes that are hard
to learn
o Pseudo-random functions F_k {0,1}"k -> {0,1}"k

e Secret keys and target functions
o Secret key equivalent to target function

e Variable length keys and machine learning polynomials of
unknown order

e Information known and unknown to attack, create model
o Know a priori distribution



Initial Comparison

e Cryptography usually wants exact identification of an
unknown function

Machine learning approximates

Computational complexity

Information Theory

Noise as an advantage/disadvantage



Cryptography’s impact on Learning Theory

e Valiant showed that work on random functions implied
approximately learning class of functions representable
by polynomial size boolean circuits is infeasible

o Focus on 1identifying which classes of functions are learnable

e Show certain learning problems are computationally

intractable

o Learning theory results on intractability are representation
dependent (boolean functions represented a certain way are
intractable)

e 2-term DNF formula consistent with a set of I/0 pairs for
such a target formula is NP-complete



Cryptography’s impact on learning theory

e Representation independent
o Cryptographic assumptions
e PAC-learing hard for
o “Small” boolean formulae
o Class of deterministic finite automata of size at most p(n) and
accepts strings of length n
o Class of threshold circuits over n variables with depth at most d
o If a machine learning function could learn these, then the algorithm
could be used to break one of the cryptographic problems assumed to
be hard
e “Prediction-preserving reducibility”

o Queries asked by learner get translated into chosen-ciphertext
requests against Naor-Yung scheme



Learning Theory’s impact on Gryptography

e Impact of negative results on learning theory on
development of cryptographic schemes

e Learning algorithm can try to infer mapping from
plaintext to ciphertext bits (approximately learning 99%
of bits)

e Design non-linear feedback shift registers used 1in
cipher-feedback mode

e Application of continuous optimization techniques to
discrete learning

e lLearning theory leading to better compressive algorithms



Learning to Protect Communications with Adversarial Neural
Cryptography (2016)

e Authors: Martin Abadi and David G. Andersen

We ask whether neural networks can learn 1o use secret keys to protect informa-
tion from other neural networks. Specifically, we focus on ensuring confidentiality
properties in a multiagent system, and we specify those properties in terms of an
adversary. Thus, a system may consist of neural networks named Alice and Bob,
and we aim to limit what a third neural network named Eve learns from eavesdrop-
ping on the communication between Alice and Bob. We do not prescribe specific
cryptographic algorithms to these neural networks: instead, we train end-to-end,
adversanally. We demonstrate that the neural networks can leam how to perform
forms of encryption and decryption, and also how to apply these operations selec-
tively in order to meet confidentiality goals.


https://arxiv.org/abs/1610.06918

Introduction

e End to end objective: learn to protect communications 1in
order to satisfy a policy specified in terms of adversary

e Encryption algorithm 1is said to be secure if no attacker
can extract infromation about plaintexts from ciphertexts

e Simple neural nets cannot even computer XOR, but neural
networks can learn to proect data from other neural nets
by “discovering” encyrption and decryption without being
taught

e Previous work: ZooCrypt (dependent on symbolic
theorem-proving, not neural networks)



Learning Symmetric Encryption

e Alice and Bob want to communicate securely over public

channel (with key K) and Eve wishes to eavesdrop on
communications
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e Let Alice, Bob, Eve be competing neural nets (inspired by

GANs)




Objective Functions

Le(84.0g. P.K) = d(P. E(8s. A(84. P.K)))

Intitively. Lg(64.0g. P. K) represents how much Eve is wrong when the plaintext is P and the
key is K. We also define a loss function for Eve over the distribution on plaintexts and keys by
taking an expected value:

Le(64.6¢) = Ep x(d(P. E(8g. A(84. P.K))))
We obtain the “optimal Eve™ by minimizing this loss:
Og(f,) = argming (Lg(8,4.0¢))

Similarly, we define a per-example reconstruction error for Bob, and extend it to the distribution on
plaintexts and keys:

Lg(04.85. P, K) = d(P. B(8s. A(6a, P, K), K))
Lp(0a.88) =Epx(d(P.B(fg. A(f4. P.K),K)))
We define a loss function for Alice and Bob by combining L ;; and the optimal value of Lg:
Lag(fa.08) = Le(04.08) — LE(84.0£(84))



Learning Symmetric Encryption

Alice produces ciphertext C, and Eve and Bob both try to
decipher 1t

o Bob has advantage because he can use key K to help decrypt

K, P, C are all floating-point numbers (easier to learn
than using bits)

E learns to minimize the error between P and P_eve

o Not trying to determine if C “looks random” (could contain metadata)
Combine A and B loss function to with objective of

minimizing the difference between P and P_Bob



Results and Conclusion

e Assume models are neural networks, but alternative models
can use reinforcement learning
e Use machine learning to make sense of metadata, traffic

analysis, pseudorandom-number generation. inteegritv
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Figure 4: Training to estimate D while hiding C.
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Figure 2: Evolution of Bob's and Eve’s reconstruction errors during training. Lines represent the
mean efror across a minibatch size of 4096.
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Analysis of Neural Cryptography (2002)

e Authors: Alexander Klimov, Anton Mityagin, Adi Shamir

Abstract. In this paper we analyse the security of a new key exchange
protocol proposed in [3] which is based on mutually learning neural
networks. This is a new potential source for public key cryptographic
schemes which are not based on number theoretic functions. and have
small time and memory complexities. In the first part of the paper we
analvse the scheme. explain why the two parties converge to a common
kev, and why an attacker using a similar neural network is unlikely to
converge to the same key. However. in the second part of the paper we
show that this key exchange protocol can be broken in three different
ways. and thus 1t 15 completely insecure.


https://www.iacr.org/archive/asiacrypt2002/25010286/25010286.ps

Analysis of Neural Cryptography (2002)

e Alice and Bob use “chaotic syncronization” to agree upon
key in key exchange protocol

e Genetic attack: create a large population of neural
networks and train them as the same inputs as Alice and
Bob, only keep ones with similar output

e Geometric attack:

e Probabalistic attack

e Apply attacks to other works?


https://www.iacr.org/archive/asiacrypt2002/25010286/25010286.ps

CryptoNets: Applying Neural Networks to Encrypted Data
with High Throughput and Accuracy (2016)

e Authors: Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine,
Kristen Lauter, Michael Naehrig, John Wernsing

Applying machine learming to a problem which involves medical, financial, or other types of sensitive data, not
oaly requires accurate predictons but also careful attention 1o maintaining data privacy and security. Legal and ethical
requirements may prevent the use of cloudsbased machine learning solutions for such tasks. In this work, we will
present a method to convert learmned neural networks 1o CryptaNets, neural networks that can be applied to encrypted
data. This allows a data owner to send their data in an encrypted form to a cloud service that hosts the network.
The encryption ensures that the data remains confidential since the cloud does not have access to the keys needed
to decrypt 1. Nevertheless, we will show that the cloud service is capable of applying the neural network 1o the
encrypted data 1o make encrypted predictions, and also return them in encrypled form. These encrypted predictions
can be sent back 10 the owner of the secret key who can decrypt them. Therefore, the cloud service does not gain any
information about the raw data nor about the prediction it made.

We demonstrate CryptoNets on the MNIST optical charscter recognition tasks. CryptoNets achieve %9% accuracy
and can make more than 51000 predictions per hour on a single PC. Therefare, they allow high throughput, accurate,
and private predictions.


https://www.microsoft.com/en-us/research/wp-content/uploads/2016/04/CryptonetsTechReport.pdf

Summary

e Enable Machine Learning As a Service by allowing model to
be trained on encrypted data using homomorphic encryption

e Run as typical model with several changes to adjust for
encrypted data

e Other approaches including Multi-Party Computation

e Future work: use GPUs, FPGAs to accelerate computation
and find more efficient encoding schemes that allow for
smaller parameters



On Lattices, Learning with Errors, Random Linear Codes, and
Cryptography (2009)

e Author: Oded Regev

Our main result is a reduction from worst-case lattice problems such as GAPSVP and SIVP to a
certain learning problem. This leaming problem is a natural extension of the ‘leaming from paniy with
error’ problem to higher moduli. It can also be viewed as the problem of decoding from a random linear
code. This, we believe. gives a strong indication that these problems are hard. Our reduction, however, is
quantum. Hence, an efficient solution to the leaming problem implies a giidittion algorithm for GAPSVP
and SIVP. A main open question is whether this reduction can be made classical (i.e.. non-guantum).

We also present a (classical) public-key cryptosystem whose security is based on the hardness of the
leaming problem. By the main result, its security is also based on the worst-case quantum hardness of
GAPSVP and SIVP. The new cryptosystem is much more efficient than previous lattice-based cryp-
tosystems: the public key is of size O(n?) and encrypting a message increases its size by a factor of
Oin) (in previous cryptosystems these values are O{n*) and O{n?j, respectively). In fact. under the
assumption that all parties share a random bit string of length ({n?). the size of the public key can be
reduced to O(n).


http://www.cims.nyu.edu/~regev/papers/qcrypto.pdf

Summary

e Show the reduction of “lattice problem” (used for
cryptographic schemes) to a machine learning problem

e ‘lLearning from parity with error’ or decoding from a
random linear code

(s.a;) =; b (mod 2)
(s.ay) =, by (mod 2)

e Derive public-key cryptosytem whose security is based on
hardness of hte learning problem



Differential Privacy and Machine Learning: A Survey and

Review (2014)

e Authors: Zhanglong Ji, Zachary C. Lipton,

SMAovIavw

The objective of machine learning is to extract useful information from
data, while privacy is preserved by concealing information. Thus it seems
hard to reconcile these competing interests. However, they frequently
must be balanced when mining sensitive data. For example, medical re-
search represents an important application where it is necessary both to
extract useful information and protect patient privacy. One way to re-
solve the conflict is to extract general characteristics of whole populations
without disclosing the private information of individuals.

In this paper, we consider differential privacy, one of the most popular
and powerful definitions of privacy. We explore the interplay between ma-
chine learning and differential privacy, namely privacy-preserving machine
learning algorithms and learning-based data release mechanisms. We also
describe some theoretical results that address what can be learned dif-
ferentially privately and upper bounds of loss functions for differentially
private algorithms.

Finally, we present some open questions, including how to incorpo-
rate public data, how to deal with missing data in private datasets, and
whether, as the number of observed samples grows arbitrarily large, differ-
entially private machine learning algorithms can be achieved at no cost to
utility as compared to corresponding non-differentially private algorithms.

Charles Elkan


https://arxiv.org/pdf/1412.7584v1.pdf

Summary

e How to train a differentially private model with as
little noise as possible?

e Add noise once (if we add multiple times, we divide
privacy budget)and occasionally add noise iteratively

e Lower global sensitivity to noise

e Use of public data



Aggregative Private Sparse Learning Models Using
Multi-Party Computation (Presentation given at SRG)

Authors: anonymous

N hospitals want to work together to securely create a
machine learning model

Approach: learn model on local data and then send
encrypted parameters to third party

Third party takes mean of parameters and then returns
model back to hospitals



Other papers

e On the use of Recurrent Neural Networks to design
Symmetric Ciphers (2008)
o Similar to deep mind paper

e Power Analysis attack: an approach based on machine
learning (2014)
o Take advantage of high dimensionality to attack model

e Cryptic-Mining: Association Rules Extractions Using
Session Log (2015)

o Similar to deep mind paper


http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4490260
http://www.inderscienceonline.com/doi/pdf/10.1504/IJACT.2014.062722
http://link.springer.com/chapter/10.1007/978-3-319-21410-8_53

Other papers:

e generation and establishment of cryptographic keys
(Ruttor, 2006; Kinzel & Kanter, 2002), and on
corresponding attacks (Klimov et al., 2002).



