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Difference Target Propagation (2015)

e Authors: Dong-Hyun Lee, Saizheng Zhang, Asja Fischer,
Yoshua Bengio

e Proposes target propagation as alternative to back prop
for handling deeply non-linear (i.e. discrete) functions

e Propagate targets for each layer 1instead of gradients



Difference Target Propagation (2015)

e Vanishing/exploding gradient problem 1in back prop

o Extreme case: discrete functions

e Biological implausibility of back prop

e Target prop: each feedforward unit’s activation value 1s
associated with a target value

e Layer-local training criterion for updating each layer
separately



Difference Target Propagation (2015)

e Instead of propagating error signals, assign each hidden
layer a nearby value (h_i carrot) that leads to lower

loss
h; = fi(h;_1) = s;(W;h;_4), i=1,....M
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Difference Target Propagation (2015)

e Define layer-local target loss and update using SGD
o Avoids vanishing/exploding gradient by computing derivatives for only
a single layer

e Use “approximate inverse” to define intermediate targets
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Difference Target Propagation (2015)

e lLearn approximate inverse using auto-encoder

e Train inverse mapping via additional autoencoder loss
o Modify loss with noise injection so inverse corresponds to
neighborhood

e Update direction of target prop does not deviate by more
than 90 degrees from gradient direction
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Difference Target Propagation (2015)
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Fig. 1. (left) How to compute a target in the lower layer via difference target propagation.
fi(hi—1) should be closer to h; than f;(h;_1). (right) Diagram of the back-propagation-free
auto-encoder via difference target propagation.



Difference Target Propagation (2015)

e Using just the inverse function leads to optimization

problems
o Proposes linear correction to target prop
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Difference Target Propagation (2015)

Algorithm 1 Training deep neural networks via difference target propagation

Compute unit values for all layers:
fori =1to M do
h; + fi(hi—1)
end for
Making the first target: hps 1 < ha1 — f;a}fi%, (L is the global loss)
Compute targets for lower layers: '
fori =M —1to2do ,
h;_1 + hi—1 — gi(h:) + gi(hs)
end for
Training feedback (inverse) mapping:
fori =M —1to2do
Update parameters for g; using SGD with following a layer-local loss Li™"
L™ = ||gi( fi(hi1 +€) — (hio1 + |3, €~ N(0,0)
end for
Training feedforward mapping:
fori =1to M do
Update parameters for f; using SGD with following a layer-local loss L;
Li = ||fi(hi—1) — hy||}3 ifi < M, L; = L (the global loss) ifi= M.
end for




Difference Target Propagation (2015)

e If input of ith layer becomes target, output of ith layer
also gets closer to target

i — fi (hi—1)[[3 < [[hi — by [3



Difference Target Propagation (2015)

e Autoencoders can also be trained using difference target
prop

h = f(x) = sig(Wx + b)
z=g(h) =sigWT(h+e¢e)+c), e~N(0,0)

L=|lz-x||3+[If(x+e€) = h|l3, e~N(0,0)

h=h+ f(2) - f(z) = 2h - f(2)



Difference Target Propagation (2015)

e Trained deep feedforward net with RMSProp optimization
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Fig. 2. Mean training cost (left) and train/test classification error (right) with target propagation
and back-propagation using continuous deep networks (tanh) on MNIST. Error bars indicate the
standard deviation.



Difference Target Propagation (2015)

e Trained discrete networks using target prop

h; = fi(x) = tanh(W;x) and hy = f3(hy) = tanh(Wssign(h,))
p(y|x) = f3(hs) = softmax(W3hs)
g2(hy) = tanh(V5sign(hy))

Ly = ||g2(f2(h1 + €)) — (b1 +)[[3, €~ N(0,0)



Difference Target Propagation (2015)
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Difference Target Propagation (2015)

e Also trained stochastic network using difference backprop

h? = P(Hz‘ = 1lh;_1) = U(I"Vi.hi—l)_-. h; ~ P(Hilhi—l)
Ih?
oh?_, = oh? ,01;1 ~ o' (Wih;_1)WIon?
ah:

L™ = |lgi(fi(hi_y +€)) = (hi_y +€)|[3, €~ N(0,0)



Difference Target Propagation (2015)

Method Test Error(%)
Difference Target-Propagation, M=1 1.54%
Straight-through gradient estimator [.5] + backprop, M=1
as reported in Raiko et al. [17] 1.71%
as reported in Tang and Salakhutdinov [20], M=20 3.99%
as reported in Raiko et al. [17], M=20 1.63%

Table 1. Mean test Error on MNIST for stochastoc networks. The first row shows the results of
our experiments averaged over 10 trials. The second row shows the results reported in [I7]. M
corresponds to the number of samples used for computing output probabilities. We used M=1
during training and M=100 for the test set.



Difference Target Propagation (2015)

e Target prop can be used to train autoencoders to achieve
a good initial representation (pre-training)

e Conclusion: Target prop performs comparably to backprop
with deep feedforward nets and autoencoders, and performs
state-of-the-art with stochastic networks



Credit Assignment through Time: Alternatives to
Backpropagation (1994)

e Authors: Yoshua Bengio, Paolo Frasconi

e Considers the use of alternative algorithms for training
recurrent neural networks to avoid vanishing/exploding
gradient

e Gradient descent effectiveness decreases as duration of
dependencies increases



Credit Assignment through Time: Alternatives to

Backpropagation (1994)

Latch: store bits of information for arbitrary durations
M: nonlinear map with (potentially) tunable parameters
A_t: system state, u_t: external input @ =M(a;1)+w
Latching information can be done by restricting A_t to a
subset of its domain

o This region is a basin of attraction; information can be unlatched by
being pushed out of the basin

Either system will be very sensitive to noise, or
derivatives will converge exponentially to 0 as t
increases



Credit Assignment through Time: Alternatives to
Backpropagation (1994)

e Simulated annealing: perform cycle of random moves

e Multi-grid random search: search around fixed
hyper-rectangle of points

e Time weighted pseudo-newton: uses second-order
derivatives of the cost function wrt weights at different
time steps

U] dC (p)
Awi(p) = — 2 X
Z; ISt +n O



Credit Assignment through Time: Alternatives to
Backpropagation (1994)

e Discrete error propagation: Error propagation rules for
simple discrete units (i.e. thresholds)

e EM Approach to target prop
o Finite-state learning system el f_A"
o State g_t takes on one of n vals B
o Learning is max Llikelihood P(gi-1 = jlut™";0)
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Credit Assignment through Time: Alternatives to
Backpropagation (1994)

e Propose feedforward subnetwork for each state that
outputs probability using softmax

e Distribution over states at time t is linear combination
of outputs of subnetworks (using Markovian assumption)

e Training finds parameters theta to maximize likelihood of

correct state at end of sequence

P(ge = i|u};0) =ZP(‘1z—l =] luzl—l;o)P(‘h =1i|qe-1=J,u;0)
J

L(8) = [] Plar, = a5, |ui";8)  Le(6) = [[ Pai” |u1":6)  Q(9,6%) = Ellog Le(9) | 6*]
P p



Credit Assignment through Time: Alternatives to
Backpropagation (1994)

e Experiments: classify sequences/compute parity of

sequence
o EM target prop performed the best

e Conclusion: BP can be outperformed by alternative
approaches in sequence classification tasks, but
generalizations
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