Summary of Review Paper: Optimization Methods for Large-Scale Machine Learning

Muthu Chidambaram

Department of Computer Science, University of Virginia

https://qdata.github.io/deep2Read/

Introduction

- Authors: Leon Bouttou, Frank E. Curtis, Jorge Nocedal
- Overview of optimization methods
- Characterization of large-scale machine learning as a distinctive setting
- Research directions for next generation of optimization methods

Stochastic vs Batch Gradient Methods

• Stochastic Gradient Descent

- Formulated as: $w_{k+1} \leftarrow w_k \alpha_k \nabla f_{i_k}(w_k)$
- \circ $\,$ Uses information more efficiently $\,$
- Computationally less expensive
- Batch Gradient Descent
 - Formulated as: $w_{k+1} \leftarrow w_k \alpha_k \nabla R_n(w_k) = w_k \frac{\alpha_k}{n} \sum_{i=1}^n \nabla f_i(w_k)$
 - Better performance over large number of epochs
 - Less noisy

Notation

- f: composition of loss and prediction functions
- ξ : random sample or set of samples from data
- w: parameters of prediction function
- f_i: loss with respect to a single sample

SGD Analysis: Lipschitz Continuous

Assumption 4.1 (Lipschitz-continuous objective gradients). The objective function F: $\mathbb{R}^d \to \mathbb{R}$ is continuously differentiable and the gradient function of F, namely, $\nabla F : \mathbb{R}^d \to \mathbb{R}^d$, is Lipschitz continuous with Lipschitz constant L > 0, i.e.,

$$\|\nabla F(w) - \nabla F(\overline{w})\|_2 \le L \|w - \overline{w}\|_2 \text{ for all } \{w, \overline{w}\} \subset \mathbb{R}^d.$$

Lemma 4.2. Under Assumption 4.1, the iterates of SG (Algorithm 4.1) satisfy the following inequality for all $k \in \mathbb{N}$:

$$\mathbb{E}_{\xi_k}[F(w_{k+1})] - F(w_k) \le -\alpha_k \nabla F(w_k)^T \mathbb{E}_{\xi_k}[g(w_k, \xi_k)] + \frac{1}{2}\alpha_k^2 L \mathbb{E}_{\xi_k}[\|g(w_k, \xi_k)\|_2^2].$$
(4.4)

SGD Analysis: Restrictions on Moments

Assumption 4.3 (First and second moment limits). The objective function and SG (Algorithm $\frac{4.1}{4.1}$) satisfy the following:

- (a) The sequence of iterates $\{w_k\}$ is contained in an open set over which F is bounded below by a scalar F_{inf} .
- (b) There exist scalars $\mu_G \ge \mu > 0$ such that, for all $k \in \mathbb{N}$,

$$\nabla F(w_k)^T \mathbb{E}_{\xi_k}[g(w_k, \xi_k)] \ge \mu \|\nabla F(w_k)\|_2^2 \quad and$$

$$\|\mathbb{E}_{\xi_k}[g(w_k, \xi_k)]\|_2 \le \mu_G \|\nabla F(w_k)\|_2.$$
(4.7a)
(4.7b)

(c) There exist scalars $M \ge 0$ and $M_V \ge 0$ such that, for all $k \in \mathbb{N}$,

$$\mathbb{V}_{\xi_k}[g(w_k, \xi_k)] \le M + M_V \|\nabla F(w_k)\|_2^2.$$
(4.8)

SGD Analysis: Strongly Convex (Fixed Stepsize)

Assumption 4.5 (Strong convexity). The objective function $F : \mathbb{R}^d \to \mathbb{R}$ is strongly convex in that there exists a constant c > 0 such that

$$F(\overline{w}) \ge F(w) + \nabla F(w)^T (\overline{w} - w) + \frac{1}{2}c \|\overline{w} - w\|_2^2 \quad \text{for all} \quad (\overline{w}, w) \in \mathbb{R}^d \times \mathbb{R}^d.$$
(4.11)

Hence, F has a unique minimizer, denoted as $w_* \in \mathbb{R}^d$ with $F_* := F(w_*)$.

Theorem 4.6 (Strongly Convex Objective, Fixed Stepsize). Under Assumptions 4.1, 4.3, and 4.5 (with $F_{inf} = F_*$), suppose that the SG method (Algorithm 4.1) is run with a fixed stepsize, $\alpha_k = \bar{\alpha}$ for all $k \in \mathbb{N}$, satisfying

$$0 < \bar{\alpha} \le \frac{\mu}{LM_G}.\tag{4.13}$$

Then, the expected optimality gap satisfies the following inequality for all $k \in \mathbb{N}$:

$$\mathbb{E}[F(w_k) - F_*] \leq \frac{\bar{\alpha}LM}{2c\mu} + (1 - \bar{\alpha}c\mu)^{k-1} \left(F(w_1) - F_* - \frac{\bar{\alpha}LM}{2c\mu}\right)$$

$$\xrightarrow{k \to \infty} \frac{\bar{\alpha}LM}{2c\mu}.$$
(4.14)

SGD Analysis: Strongly Convex (Diminishing Stepsize)

Theorem 4.7 (Strongly Convex Objective, Diminishing Stepsizes). Under Assumptions 4.1, 4.3, and 4.5 (with $F_{inf} = F_*$), suppose that the SG method (Algorithm 4.1) is run with a stepsize sequence such that, for all $k \in \mathbb{N}$,

$$\alpha_k = \frac{\beta}{\gamma + k} \quad \text{for some} \quad \beta > \frac{1}{c\mu} \quad \text{and} \quad \gamma > 0 \quad \text{such that} \quad \alpha_1 \le \frac{\mu}{LM_G}. \tag{4.18}$$

Then, for all $k \in \mathbb{N}$, the expected optimality gap satisfies

$$\mathbb{E}[F(w_k) - F_*] \le \frac{\nu}{\gamma + k},\tag{4.19}$$

where

$$\nu := \max\left\{\frac{\beta^2 LM}{2(\beta c\mu - 1)}, (\gamma + 1)(F(w_1) - F_*)\right\}.$$
(4.20)

Roles of Assumptions

- Strong Convexity
 - \circ $% 10^{-1}\ {\rm Key}$ for ensuring 0(1/k) convergence
- Initialization
 - Can be used to decrease the prominence of initial gap in decreasing stepsize optimization

SGD Analysis: General Objectives

Theorem 4.8 (Nonconvex Objective, Fixed Stepsize). Under Assumptions 4.1 and 4.3, suppose that the SG method (Algorithm 4.1) is run with a fixed stepsize, $\alpha_k = \bar{\alpha}$ for all $k \in \mathbb{N}$, satisfying

$$0 < \bar{\alpha} \le \frac{\mu}{LM_G}.\tag{4.25}$$

Then, the expected sum-of-squares and average-squared gradients of F corresponding to the SG iterates satisfy the following inequalities for all $K \in \mathbb{N}$:

$$\mathbb{E}\left[\sum_{k=1}^{K} \|\nabla F(w_k)\|_2^2\right] \leq \frac{K\bar{\alpha}LM}{\mu} + \frac{2(F(w_1) - F_{\inf})}{\mu\bar{\alpha}}$$
(4.26a)
and therefore
$$\mathbb{E}\left[\frac{1}{K}\sum_{k=1}^{K} \|\nabla F(w_k)\|_2^2\right] \leq \frac{\bar{\alpha}LM}{\mu} + \frac{2(F(w_1) - F_{\inf})}{K\mu\bar{\alpha}}$$
(4.26b)
$$\frac{K \to \infty}{\mu} \frac{\bar{\alpha}LM}{\mu}.$$

SGD Analysis: General Objectives

Theorem 4.10 (Nonconvex Objective, Diminishing Stepsizes). Under Assumptions 4.1 and 4.3, suppose that the SG method (Algorithm 4.1) is run with a stepsize sequence satisfying (4.17). Then, with $A_K := \sum_{k=1}^{K} \alpha_k$,

$$\mathbb{E}\left[\sum_{k=1}^{K} \alpha_{k} \|\nabla F(w_{k})\|_{2}^{2}\right] < \infty$$
(4.28a)

and therefore $\mathbb{E}\left[\frac{1}{A_{K}} \sum_{k=1}^{K} \alpha_{k} \|\nabla F(w_{k})\|_{2}^{2}\right] \xrightarrow{K \to \infty} 0.$
(4.28b)

Complexity for Large-Scale Learning

- Consider infinite supply of training examples
- Batch gradient descent increases linearly
- SGD is independent of training examples

		Batch	Stochastic
$\mathcal{T}(n,\epsilon)$	~	$n \log\left(\frac{1}{\epsilon}\right)$	$\frac{1}{\epsilon}$
E*	\sim	$\frac{\log(\mathcal{T}_{\max})}{\mathcal{T}_{\max}} + \frac{1}{\mathcal{T}_{\max}}$	$rac{1}{\mathcal{T}_{ ext{max}}}$

SGD Noise Reduction Methods

- Dynamic sampling
 - Minibatches
- Gradient aggregation
 - \circ Store previous gradients
- Iterate averaging
 - Average of iterated values

SGD Noise Reduction Behavior

Theorem 5.1 (Strongly Convex Objective, Noise Reduction). Suppose that Assumptions 4.1, 4.3, and 4.5 (with $F_{inf} = F_*$) hold, but with (4.8) refined to the existence of constants $M \ge 0$ and $\zeta \in (0,1)$ such that, for all $k \in \mathbb{N}$,

$$\mathbb{V}_{\xi_k}[g(w_k,\xi_k)] \le M\zeta^{k-1}.$$
(5.1)

In addition, suppose that the SG method (Algorithm 4.1) is run with a fixed stepsize, $\alpha_k = \bar{\alpha}$ for all $k \in \mathbb{N}$, satisfying

$$0 < \bar{\alpha} \le \min\left\{\frac{\mu}{L\mu_G^2}, \frac{1}{c\mu}\right\}.$$
(5.2)

Then, for all $k \in \mathbb{N}$, the expected optimality gap satisfies

$$\mathbb{E}[F(w_k) - F_*] \le \omega \rho^{k-1}, \tag{5.3}$$

where

$$\omega := \max\{\frac{\bar{\alpha}LM}{c\mu}, F(w_1) - F_*\}$$
(5.4a)

and
$$\rho := \max\{1 - \frac{\bar{\alpha}c\mu}{2}, \zeta\} < 1.$$
 (5.4b)

SGD Dynamic Sampling

_ _ _

- Increasing minibatch size geometrically guarantees linear convergence
- Practical implementations: adaptive sampling
 - \circ $\,$ Not tried extensively in ML $\,$

SGD Gradient Aggregation

- Stochastic Variance Reduced Gradient (SVRG)
 Start with batch update and use to correct bias in SGD
- SAGA
 - \circ $\,$ Uses average of previous gradients to unbias SGD $\,$

SGD Iterate Averaging

• Take average of computed parameters to reduce noise

$$w_{k+1} \leftarrow w_k - \alpha_k g(w_k, \xi_k)$$

and $\tilde{w}_{k+1} \leftarrow \frac{1}{k+1} \sum_{j=1}^{k+1} w_j,$

Second-Order Methods

- Motivation: SGD not scale invariant
- Hessian-free Newton Method
 - Uses second-order information
- Quasi-Newton and Gauss-Newton Methods
 - Mimic Newton method using sequence of first order information
- Natural Gradient
 - Defines search direction in the space of realizable distributions

Second-Order Method Overview

Hessian-Free Inexact Newton Methods

- Solve Newton system with CG instead of matrix factorization
 - \circ Only requires Hessian vector products
 - Similar to kernel trick

Example 6.1. Consider the function of the parameter vector $w = (w_1, w_2)$ given by $F(w) = \exp(w_1w_2)$. Let us define, for any $d \in \mathbb{R}^2$, the function

$$\phi(w;d) = \nabla F(w)^T d = w_2 \exp(w_1 w_2) d_1 + w_1 \exp(w_1 w_2) d_2.$$

Computing the gradient of ϕ with respect to w, we have

$$\nabla_w \phi(w; d) = \nabla^2 F(w) d = \begin{bmatrix} w_2^2 \exp(w_1 w_2) d_1 + (\exp(w_1 w_2) + w_1 w_2 \exp(w_1 w_2)) d_2 \\ (\exp(w_1 w_2) + w_1 w_2 \exp(w_1 w_2)) d_1 + w_1^2 \exp(w_1 w_2) d_2 \end{bmatrix}$$

Subsampled Hessian-Free Newton Methods

Algorithm 6.1 Subsampled Hessian-Free Inexact Newton Method

- 1: Choose an initial iterate w_1 .
- 2: Choose constants $\rho \in (0, 1), \gamma \in (0, 1), \eta \in (0, 1), \text{ and } \max_{cg} \in \mathbb{N}.$

3: for
$$k = 1, 2, ...$$
 do

- 4: Generate realizations of ξ_k and ξ_k^H corresponding to $\mathcal{S}_k^H \subseteq \mathcal{S}_k$.
- 5: Compute s_k by applying Hessian-free CG to solve

$$\nabla^2 f_{\mathcal{S}_k^H}(w_k; \xi_k^H) s = -\nabla f_{\mathcal{S}_k}(w_k; \xi_k)$$

until \max_{cg} iterations have been performed or a trial solution yields

$$||r_k||_2 := ||\nabla^2 f_{\mathcal{S}_k^H}(w_k; \xi_k^H) s + \nabla f_{\mathcal{S}_k}(w_k; \xi_k)||_2 \le \rho ||\nabla f_{\mathcal{S}_k}(w_k; \xi_k)||_2.$$

6: Set $w_{k+1} \leftarrow w_k + \alpha_k s_k$, where $\alpha_k \in \{\gamma^0, \gamma^1, \gamma^2, \dots\}$ is the largest element with

$$f_{\mathcal{S}_k}(w_{k+1};\xi_k) \le f_{\mathcal{S}_k}(w_k;\xi_k) + \eta \alpha_k \nabla f_{\mathcal{S}_k}(w_k;\xi_k)^T s_k.$$
(6.6)

7: end for

Stochastic Quasi-Newton Methods

- Approximate Hessian using only first-order methods
- Problems
 - \circ $\,$ Hessian approximations can be dense, even when Hessian is sparse
 - Limited memory scheme only allows provably linear convergence

$$s_k := w_{k+1} - w_k$$
 and $v_k := \nabla F(w_{k+1}) - \nabla F(w_k)$,

$$H_{k+1} \leftarrow \left(I - \frac{v_k s_k^T}{s_k^T v_k}\right)^T H_k \left(I - \frac{v_k s_k^T}{s_k^T v_k}\right) + \frac{s_k s_k^T}{s_k^T v_k}$$

Gauss-Newton Methods

• Minimize second-order Taylor series expansion

$$G_{\mathcal{S}_{k}^{H}}(w_{k};\xi_{k}^{H}) = \frac{1}{|\mathcal{S}_{k}^{H}|} \sum_{i \in \mathcal{S}_{k}^{H}} J_{h}(w_{k};\xi_{k,i})^{T} H_{\ell}(w_{k};\xi_{k,i}) J_{h}(w_{k};\xi_{k,i})$$

Natural Gradient Methods

- Invariant to all invertible transformations
- Gradient descent over prediction functions

$$w_{k+1} = \underset{w \in \mathcal{W}}{\operatorname{arg\,min}} F(w) \quad \text{s.t.} \quad \frac{1}{2} (w - w_k)^T G(w_k) (w - w_k) \le \eta_k^2 \,.$$
$$w_{k+1} = \underset{w \in \mathcal{W}}{\operatorname{arg\,min}} \nabla F(w_k)^T (w - w_k) + \frac{1}{2\alpha_k} (w - w_k)^T G(w_k) (w - w_k)$$
$$w_{k+1} = w_k - \alpha_k G^{-1}(w_k) \nabla F(w_k)$$
$$G(w) := \mathbb{E}_{h_w} \left[\frac{\partial^2 \log(h_w(x))}{\partial w^2} \right] = \mathbb{E}_{h_w} \left[\left(\frac{\partial \log(h_w(x))}{\partial w} \right) \left(\frac{\partial \log(h_w(x))}{\partial w} \right)^T \right]$$

Diagonal Scaling Methods

- Rescale search direction using diagonal transformation
- Examples

_ _ _

- RMSProp
- AdaGrad
- Structural Methods
 - \circ Batch Normalization