Summary of Review Paper: Optimization Methods for Large-Scale Machine Learning

Muthu Chidambaram

Department of Computer Science, University of Virginia

https://qdata.github.io/deep2Read/
Introduction

- **Authors:** Leon Bouttou, Frank E. Curtis, Jorge Nocedal
- Overview of optimization methods
- Characterization of large-scale machine learning as a distinctive setting
- Research directions for next generation of optimization methods
Stochastic vs Batch Gradient Methods

- - -

- **Stochastic Gradient Descent**
 - Formulated as: \(w_{k+1} \leftarrow w_k - \alpha_k \nabla f_i(w_k) \)
 - Uses information more efficiently
 - Computationally less expensive

- **Batch Gradient Descent**
 - Formulated as: \(w_{k+1} \leftarrow w_k - \alpha \nabla R_n(w_k) = w_k - \frac{\alpha}{n} \sum_{i=1}^{n} \nabla f_i(w_k) \)
 - Better performance over large number of epochs
 - Less noisy
Notation

- f: composition of loss and prediction functions
- ξ: random sample or set of samples from data
- w: parameters of prediction function
- f_i: loss with respect to a single sample
SGD Analysis: Lipschitz Continuous

Assumption 4.1 (Lipschitz-continuous objective gradients). The objective function $F: \mathbb{R}^d \to \mathbb{R}$ is continuously differentiable and the gradient function of F, namely, $\nabla F: \mathbb{R}^d \to \mathbb{R}^d$, is Lipschitz continuous with Lipschitz constant $L > 0$, i.e.,

$$
\|\nabla F(w) - \nabla F(\bar{w})\|_2 \leq L\|w - \bar{w}\|_2 \text{ for all } \{w, \bar{w}\} \subset \mathbb{R}^d.
$$

Lemma 4.2. Under Assumption 4.1, the iterates of SG (Algorithm 4.1) satisfy the following inequality for all $k \in \mathbb{N}$:

$$
\mathbb{E}_{\xi_k}[F(w_{k+1})] - F(w_k) \leq -\alpha_k \nabla F(w_k)^T \mathbb{E}_{\xi_k}[g(w_k, \xi_k)] + \frac{1}{2} \alpha_k^2 L \mathbb{E}_{\xi_k}[\|g(w_k, \xi_k)\|_2^2]. \quad (4.4)
$$
SGD Analysis: Restrictions on Moments

Assumption 4.3 (First and second moment limits). The objective function and SG (Algorithm 4.1) satisfy the following:

(a) The sequence of iterates \(\{w_k\} \) is contained in an open set over which \(F \) is bounded below by a scalar \(F_{\text{inf}} \).

(b) There exist scalars \(\mu_G \geq \mu > 0 \) such that, for all \(k \in \mathbb{N} \),

\[
\nabla F(w_k)^T \mathbb{E}_{\xi_k}[g(w_k, \xi_k)] \geq \mu \| \nabla F(w_k) \|_2^2 \quad \text{and} \quad \| \mathbb{E}_{\xi_k}[g(w_k, \xi_k)] \|_2 \leq \mu_G \| \nabla F(w_k) \|_2. \quad (4.7a)
\]

(c) There exist scalars \(M \geq 0 \) and \(M_V \geq 0 \) such that, for all \(k \in \mathbb{N} \),

\[
\nabla \xi_k[g(w_k, \xi_k)] \leq M + M_V \| \nabla F(w_k) \|_2^2. \quad (4.8)
\]
SGD Analysis: Strongly Convex (Fixed Stepsize)

Assumption 4.5 (Strong convexity). The objective function $F : \mathbb{R}^d \rightarrow \mathbb{R}$ is strongly convex in that there exists a constant $c > 0$ such that

$$F(\bar{w}) \geq F(w) + \nabla F(w)^T (\bar{w} - w) + \frac{1}{2} c \|\bar{w} - w\|^2$$

for all $(\bar{w}, w) \in \mathbb{R}^d \times \mathbb{R}^d$. (4.11)

Hence, F has a unique minimizer, denoted as $w_* \in \mathbb{R}^d$ with $F_* := F(w_*)$.

Theorem 4.6 (Strongly Convex Objective, Fixed Stepsize). Under Assumptions 4.1, 4.3, and 4.5 (with $F_{\text{inf}} = F_*$), suppose that the SG method (Algorithm 4.1) is run with a fixed stepsize, $\alpha_k = \bar{\alpha}$ for all $k \in \mathbb{N}$, satisfying

$$0 < \bar{\alpha} \leq \frac{\mu}{LM_G}.$$ (4.13)

Then, the expected optimality gap satisfies the following inequality for all $k \in \mathbb{N}$:

$$E[F(w_k) - F_*] \leq \frac{\bar{\alpha}LM}{2c\mu} + (1 - \bar{\alpha}c\mu)^{k-1} \left(F(w_1) - F_* - \frac{\bar{\alpha}LM}{2c\mu} \right)$$

$$\xrightarrow{k \to \infty} \frac{\bar{\alpha}LM}{2c\mu}.$$ (4.14)
Theorem 4.7 (Strongly Convex Objective, Diminishing Stepsizes). Under Assumptions 4.1, 4.3, and 4.5 (with $F_{\inf} = F_*$), suppose that the SG method (Algorithm 4.1) is run with a stepsize sequence such that, for all $k \in \mathbb{N}$,

$$\alpha_k = \frac{\beta}{\gamma + k} \text{ for some } \beta > \frac{1}{c\mu} \text{ and } \gamma > 0 \text{ such that } \alpha_1 \leq \frac{\mu}{LM_G}. \quad (4.18)$$

Then, for all $k \in \mathbb{N}$, the expected optimality gap satisfies

$$\mathbb{E}[F(w_k) - F_*] \leq \frac{\nu}{\gamma + k}, \quad (4.19)$$

where

$$\nu := \max \left\{ \frac{\beta^2 LM}{2(\beta c\mu - 1)}, (\gamma + 1)(F(w_1) - F_*) \right\}. \quad (4.20)$$
Roles of Assumptions

- **Strong Convexity**
 - Key for ensuring $O(1/k)$ convergence

- **Initialization**
 - Can be used to decrease the prominence of initial gap in decreasing stepsize optimization
Theorem 4.8 (Nonconvex Objective, Fixed Stepsize). Under Assumptions 4.1 and 4.3, suppose that the SG method (Algorithm 4.1) is run with a fixed stepsize, $\alpha_k = \bar{\alpha}$ for all $k \in \mathbb{N}$, satisfying

$$0 < \bar{\alpha} \leq \frac{\mu}{L M G}.$$ (4.25)

Then, the expected sum-of-squares and average-squared gradients of F corresponding to the SG iterates satisfy the following inequalities for all $K \in \mathbb{N}$:

$$\mathbb{E} \left[\sum_{k=1}^{K} \| \nabla F(w_k) \|^2 \right] \leq \frac{K \bar{\alpha} L M}{\mu} + \frac{2(F(w_1) - F_{\text{inf}})}{\mu \bar{\alpha}}$$ (4.26a)

and therefore

$$\mathbb{E} \left[\frac{1}{K} \sum_{k=1}^{K} \| \nabla F(w_k) \|^2 \right] \leq \frac{\bar{\alpha} L M}{\mu} + \frac{2(F(w_1) - F_{\text{inf}})}{K \mu \bar{\alpha}}.$$ (4.26b)
SGD Analysis: General Objectives

Theorem 4.10 (Nonconvex Objective, Diminishing Stepsizes). Under Assumptions 4.1 and 4.3, suppose that the SG method (Algorithm 4.1) is run with a stepsize sequence satisfying (4.17). Then, with $A_K := \sum_{k=1}^{K} \alpha_k$,

\[
\mathbb{E} \left[\sum_{k=1}^{K} \alpha_k \| \nabla F(w_k) \|^2_{2} \right] < \infty \tag{4.28a}
\]

and therefore

\[
\mathbb{E} \left[\frac{1}{A_K} \sum_{k=1}^{K} \alpha_k \| \nabla F(w_k) \|^2_{2} \right] \xrightarrow{K \to \infty} 0. \tag{4.28b}
\]
Complexity for Large-Scale Learning

- Consider infinite supply of training examples
- Batch gradient descent increases linearly
- SGD is independent of training examples

<table>
<thead>
<tr>
<th></th>
<th>Batch</th>
<th>Stochastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{T}(n, \epsilon)$</td>
<td>$n \log \left(\frac{1}{\epsilon} \right)$</td>
<td>$\frac{1}{\epsilon}$</td>
</tr>
<tr>
<td>\mathcal{E}^*</td>
<td>$\log \left(\frac{\mathcal{T}{\text{max}}}{\mathcal{T}} \right) + \frac{1}{\mathcal{T}{\text{max}}}$</td>
<td>$\frac{1}{\mathcal{T}_{\text{max}}}$</td>
</tr>
</tbody>
</table>
SGD Noise Reduction Methods

- Dynamic sampling
 - Minibatches
- Gradient aggregation
 - Store previous gradients
- Iterate averaging
 - Average of iterated values
SGD Noise Reduction Behavior

Theorem 5.1 (Strongly Convex Objective, Noise Reduction). Suppose that Assumptions 4.1, 4.3, and 4.5 (with $F_{\inf} = F_*$) hold, but with (4.8) refined to the existence of constants $M \geq 0$ and $\zeta \in (0, 1)$ such that, for all $k \in \mathbb{N}$,

$$\forall \xi_k [g(w_k, \xi_k)] \leq M\zeta^{k-1}. \quad (5.1)$$

In addition, suppose that the SG method (Algorithm 4.1) is run with a fixed stepsize, $\alpha_k = \bar{\alpha}$ for all $k \in \mathbb{N}$, satisfying

$$0 < \bar{\alpha} \leq \min \left\{ \frac{\mu}{L\mu^2_G}, \frac{1}{c\mu} \right\}. \quad (5.2)$$

Then, for all $k \in \mathbb{N}$, the expected optimality gap satisfies

$$\mathbb{E}[F(w_k) - F_*] \leq \omega \rho^{k-1}, \quad (5.3)$$

where

$$\omega := \max\left\{ \frac{\bar{\alpha}LM}{c\mu}, F(\omega_1) - F_* \right\} \quad (5.4a)$$

and $\rho := \max\{1 - \frac{\bar{\alpha}c\mu}{2}, \zeta\} < 1. \quad (5.4b)$
SGD Dynamic Sampling

- Increasing minibatch size geometrically guarantees linear convergence
- Practical implementations: adaptive sampling
 - Not tried extensively in ML
SGD Gradient Aggregation

- Stochastic Variance Reduced Gradient (SVRG)
 - Start with batch update and use to correct bias in SGD
- SAGA
 - Uses average of previous gradients to unbias SGD

\[
\tilde{g}_j \leftarrow \nabla f_{i_j}(\tilde{w}_j) - (\nabla f_{i_j}(w_k) - \nabla R_n(w_k))
\]

\[
g_k \leftarrow \nabla f_j(w_k) - \nabla f_j(w_{[j]}) + \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(w_{[i]})
\]
SGD Iterate Averaging

- Take average of computed parameters to reduce noise

\[w_{k+1} \leftarrow w_k - \alpha_k g(w_k, \xi_k) \]

and \[\bar{w}_{k+1} \leftarrow \frac{1}{k+1} \sum_{j=1}^{k+1} w_j, \]
Second-Order Methods

- Motivation: SGD not scale invariant
- Hessian-free Newton Method
 - Uses second-order information
- Quasi-Newton and Gauss-Newton Methods
 - Mimic Newton method using sequence of first order information
- Natural Gradient
 - Defines search direction in the space of realizable distributions
Second-Order Method Overview
Hessian-Free Inexact Newton Methods

- Solve Newton system with CG instead of matrix factorization
 - Only requires Hessian vector products
 - Similar to kernel trick

Example 6.1. Consider the function of the parameter vector \(w = (w_1, w_2) \) given by \(F(w) = \exp(w_1w_2) \). Let us define, for any \(d \in \mathbb{R}^2 \), the function

\[
\phi(w; d) = \nabla F(w)^T d = w_2 \exp(w_1w_2)d_1 + w_1 \exp(w_1w_2)d_2.
\]

Computing the gradient of \(\phi \) with respect to \(w \), we have

\[
\nabla_w \phi(w; d) = \nabla^2 F(w)d = \begin{bmatrix}
w_2^2 \exp(w_1w_2)d_1 + (\exp(w_1w_2) + w_1w_2 \exp(w_1w_2))d_2 \\
(\exp(w_1w_2) + w_1w_2 \exp(w_1w_2))d_1 + w_1^2 \exp(w_1w_2)d_2
\end{bmatrix}.
\]
Subsampled Hessian-Free Newton Methods

Algorithm 6.1 Subsampled Hessian-Free Inexact Newton Method

1. Choose an initial iterate w_1.
2. Choose constants $\rho \in (0, 1)$, $\gamma \in (0, 1)$, $\eta \in (0, 1)$, and $\text{max}_{cg} \in \mathbb{N}$.
3. **for** $k = 1, 2, \ldots$ **do**
4. Generate realizations of ξ_k and ξ_k^H corresponding to $S_k^H \subseteq S_k$.
5. Compute s_k by applying Hessian-free CG to solve

\[
\nabla^2 f_{S_k^H}(w_k; \xi_k^H) s = -\nabla f_{S_k}(w_k; \xi_k)
\]

until max_{cg} iterations have been performed or a trial solution yields

\[
\|r_k\|_2 := \|\nabla^2 f_{S_k^H}(w_k; \xi_k^H) s + \nabla f_{S_k}(w_k; \xi_k)\|_2 \leq \rho \|\nabla f_{S_k}(w_k; \xi_k)\|_2.
\]

6. Set $w_{k+1} \leftarrow w_k + \alpha_k s_k$, where $\alpha_k \in \{\gamma^0, \gamma^1, \gamma^2, \ldots\}$ is the largest element with

\[
f_{S_k}(w_{k+1}; \xi_k) \leq f_{S_k}(w_k; \xi_k) + \eta \alpha_k \nabla f_{S_k}(w_k; \xi_k)^T s_k.
\]

(6.6)

7. **end for**
Stochastic Quasi-Newton Methods

- Approximate Hessian using only first-order methods
- Problems
 - Hessian approximations can be dense, even when Hessian is sparse
 - Limited memory scheme only allows provably linear convergence

\[
s_k := w_{k+1} - w_k \quad \text{and} \quad v_k := \nabla F(w_{k+1}) - \nabla F(w_k),
\]

\[
H_{k+1} \leftarrow \left(I - \frac{v_k s_k^T}{s_k^T v_k} \right)^T H_k \left(I - \frac{v_k s_k^T}{s_k^T v_k} \right) + \frac{s_k s_k^T}{s_k^T v_k}
\]
Gauss-Newton Methods

- Minimize second-order Taylor series expansion

\[G_{S_k^H}(w_k; \xi_k^H) = \frac{1}{|S_k^H|} \sum_{i \in S_k^H} J_h(w_k; \xi_{k,i})^T H_f(w_k; \xi_{k,i}) J_h(w_k; \xi_{k,i}) \]
Natural Gradient Methods

- Invariant to all invertible transformations
- Gradient descent over prediction functions

\[
\begin{align*}
 w_{k+1} &= \arg\min_{w \in \mathcal{W}} F(w) \quad \text{s.t.} \quad \frac{1}{2} (w - w_k)^T G(w_k) (w - w_k) \leq \eta_k^2, \\
 w_{k+1} &= \arg\min_{w \in \mathcal{W}} \nabla F(w_k)^T (w - w_k) + \frac{1}{2\alpha_k} (w - w_k)^T G(w_k) (w - w_k) \\
 w_{k+1} &= w_k - \alpha_k G^{-1}(w_k) \nabla F(w_k) \\
 G(w) &:= \mathbb{E}_{h_w} \left[\frac{\partial^2 \log(h_w(x))}{\partial w^2} \right] = \mathbb{E}_{h_w} \left[\left(\frac{\partial \log(h_w(x))}{\partial w} \right) \left(\frac{\partial \log(h_w(x))}{\partial w} \right)^T \right]
\end{align*}
\]
Diagonal Scaling Methods

- Rescale search direction using diagonal transformation
- Examples
 - RMSProp
 - AdaGrad
- Structural Methods
 - Batch Normalization