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Introduction

e Authors: Leon Bouttou, Frank E. Curtis, Jorge Nocedal

e Overview of optimization methods

e Characterization of large-scale machine learning as a
distinctive setting

e Research directions for next generation of optimization
methods



Stochastic vs Batch Gradient Methods

e Stochastic Gradient Descent
o Formulated as: Wr+1 < wp — oV fip(wy)
o Uses information more efficiently
o Computationally less expensive

e Batch Gradient Descent
o Formulated as: wwlﬁuw—wV&AwJ=er%§iVﬂww
o Better performance over large number of epochs
o Less noisy



Notation

f: composition of loss and prediction functions
¢£: random sample or set of samples from data
w: parameters of prediction function

o
o
o
e f_1i: loss with respect to a single sample



SGD Analysis: Lipschitz Continuous

Assumption 4.1 (Lipschitz-continuous objective gradients). The objective function F :
R? — R is continuously differentiable and the gradient function of F, namely, VF : R — RY, is
Lipschitz continuous with Lipschitz constant L > 0, 1.e.,

IVF(w) — VE(@)||2 < L||lw — @]y for all {w,w}cC RY.

Lemma 4.2. Under Assumption j.1, the iterates of SG (Algorithm J.1) satisfy the following in-
equality for all k € N:

Eg, [F(wit1)] — F(wy) < —ap VF(wi) Eg, [g(w, &)] + 05 LEg, [|lg(wr, & )113]. (4.4)



SGD Analysis: Restrictions on Moments

Assumption 4.3 (First and second moment limits). The objective function and SG (Algo-
rithm j.1) satisfy the following:

(a) The sequence of iterates {wy} is contained in an open set over which F is bounded below by
a scalar Fus.

(b) There exist scalars pg > p > 0 such that, for all k € N,
V F(wi) Eg,[g(wk, &)] = pl|VF (wy)||3 and (4.7a)
1Eg [9(wr, Ee)lll2 < pallVE(wg)]|2. (4.7b)
(c¢) There exist scalars M > 0 and My > 0 such that, for all k € N,

Ve, [9(we, &)] < M + My ||V F(wy)||3. (4.8)



SGD Analysis: Strongly Convex (Fixed Stepsize)

Assumption 4.5 (Strong convexity). The objective function F : R? - R is strongly convex in
that there exists a constant ¢ > 0 such that

F(@) > F(w) + VF(w)" (T — w) + 3e||@ — wl||j for all (w,w) € R? x RY. (4.11)

Hence, F has a unique minimizer, denoted as w, € R? with F, := F(w,).
Theorem 4.6 (Strongly Convex Objective, Fixed Stepsize). Under Assumptions j.1, /.7,

and /.5 (with Fys = F, ), suppose that the SG method (Algorithm j.1) is run with a fived stepsize,

ap = @ for all k € N, satisfying
T

0<ac< . (4.13)
L Mg
Then, the expected optimality gap satisfies the following inequality for all k € N :
LM : ALM
E[F(wk) — F*] < 02 + (1 — d‘cu)k_l (F(wl) —F, — 02 )
4 £ (4.14)

2cp



SGD Analysis: Strongly Convex (Diminishing Stepsize)

Theorem 4.7 (Strongly Convex Objective, Diminishing Stepsizes). Under Assumptions /.1,
4.3, and J.5 (with Fy¢ = F, ), suppose that the SG method (Algorithm j.1) is run with a stepsize
sequence such that, for all k € N,

. 1
ap = ’}% for some 3 > C—# and v >0 such that o < TR (4.18)
Then, for all k € N, the expected optimality gap satisfies
I/
E[F(wg) — F,] < ; 4.19
[Flw) ~F] € (4.19)

where 5
B2LM N
Vo= nla.X{m,(’}'-’r 1)(F(lb1) —F*)} . (420)



Roles of Assumptions

e Strong Convexity
o Key for ensuring 0(1/k) convergence
e Initialization

o Can be used to decrease the prominence of initial gap in decreasing
stepsize optimization



SGD Analysis: General Objectives

Theorem 4.8 (Nonconvex Objective, Fixed Stepsize). Under Assumptions .1 and J.3,
suppose that the SG method (Algorithm 4.1) is run with a fived stepsize, oy, = @ for all k € N,
satisfying
I7;
4.25
~— LMg (#28)

0<ac<

Then, the expected sum-of-squares and average-squared gradients of F corresponding to the SG
iterates satisfy the following inequalities for all K € N:

K 7 2
; KaLM ‘2(F(w1) — Fj f)
E Z IVFlf| < ——+=——— (4.26a)
5 5
YL M v } —13
and therefore E Z IVF(w)|2| < alM - Z(F(u{) — Fint) (4.26b)
= 0 Kua

K—oo 2" LA.[
i ‘l .




SGD Analysis: General Objectives

Theorem 4.10 (Nonconvex Objective, Diminishing Stepsizes). Under Assumptions /.1 and

4.3, suppose that the SG method (Algorithm j.1) is run with a stepsize sequence satisfying (4.17).
: y K

Then, with A =) 1_; ok,

i -
E [Z agl|VF(wg)|3] < oo (4.28a)
k=1 A
1 o 2- K—oc
and therefore E [ rm ZakHVF(wk)H.z — 0. (4.28b)
Y k=1 il



Complexity for Large-Scale Learning

e Consider 1infinite supply of training examples
e Batch gradient descent increases linearly
e SGD is independent of training examples

Batch Stochastic
1 1
T(n,e) ~ nlog (—) -
€ €

Tmax Tmax 7;]133(




SGD Noise Reduction Methods

e Dynamic sampling
o Minibatches

e Gradient aggregation
o Store previous gradients

e Iterate averaging
o Average of 1dterated values



SGD Noise Reduction Behavior

Theorem 5.1 (Strongly Convex Objective, Noise Reduction). Suppose that Assumptions /.1,
4.3, and /.5 (with Fiye = Fy) hold, but with (4.8) refined to the existence of constants M > 0 and
¢ € (0,1) such that, for all k € N,

Ve [g(wr, &)] < M¢F1. (5.1)

In addition, suppose that the SG method (Algorithm J.1) is run with a fized stepsize, oy, = @ for
all k € N, satisfying

O<d-§min{L_i}. (5.2)

Lué, cp

Then, for all k € N, the expected optimality gap satisfies

E[F(wk) — F] < wp™™, (5.3)
where
W= max{a—cli“"—" F(wy) — F,} (5.4a)

and p:=max{l — §-§‘—‘(} <1 (5.4b)



SGD Dynamic Sampling

e Increasing minibatch size geometrically guarantees Llinear
convergence

e Practical implementations: adaptive sampling
o Not tried extensively 1in ML



SGD Gradient Aggregation

e Stochastic Variance Reduced Gradient (SVRG)
o Start with batch update and use to correct bias in SGD
e SAGA

o Uses average of previous gradients to unbias SGD

gj < Vfi; (w;) — (V fi; (wi) — VR, (wy)) gr — V fi(we) =V fi(wp;) + _ >V filwy)

n 4



SGD lterate Averaging

e Take average of computed parameters to reduce noise

We41 & Wi — OAg(lLk k)
k+1

and w — —
k+1 ];—}-].Z _]



Second-Order Methods

e Motivation: SGD not scale invariant
¢ Hessian-free Newton Method
o Uses second-order information

e Quasi-Newton and Gauss—-Newton Methods
o Mimic Newton method using sequence of first order information

e Natural Gradient
o Defines search direction in the space of realizable distributions



Second-Order Method Overview

Stochastic Batch
gradient method gradient method
«--= Diagonal Scaling ==«-»
0 €~~~ quasi-Newton ----»

€~~~ Gauss-Newton ===-»
Hessian-free Newton ==-«»

Natural gradient =.-.»
Stochastic

Newton method




Hessian-Free Inexact Newton Methods

e Solve Newton system with CG instead of matrix

factorization

o Only requires Hessian vector products
m Similar to kernel trick

Example 6.1. Consider the function of the parameter vector w = (wy, ws) given by F(w) =
exp(wywsy). Let us define, for any d € R2, the function

d(w:;d) = VF(w)Td = wy exp(wyws)dy + wy exp(wiws)ds.
Computing the gradient of ¢ with respect to w, we have

wj exp(wiws)dy + (exp(wiws) + wyws exp(wywy))dy

N N o T R Sl ,
e Sk L L (exp(wiwa) + wiws exp(wiws))di + wi exp(wiws)da



Subsampled Hessian-Free Newton Methods

Algorithm 6.1 Subsampled Hessian-Free Inexact Newton Method

1: Choose an initial iterate w;y.

2: Choose constants p € (0,1), v € (0,1), € (0,1), and max.y € N.
3: fork=1,2,... do

4 Generate realizations of & and {f corresponding to S{{ €S-
5 Compute s, by applying Hessian-free CG to solve

VQfSF(wk; f{{)s = —V fs. (wi; &)

until max,, iterations have been performed or a trial solution yields
2 H
Irllz = V" fsp (wr: &' )s + V fs (wi: &k)ll2 < plIV S5 (wi: &) l2-
6: Set w4y ¢ wr + apsg. where oy, € {')"O, A1, 42, ...} is the largest element with

Fsi(wii1: &) € Fsp (wps &) + eV fis, (wie: &) T sge. (6.6)

~J

: end for



Stochastic Quasi-Newton Methods

e Approximate Hessian using only first-order methods

e Problems
0o Hessian approximations can be dense, even when Hessian is sparse
o Limited memory scheme only allows provably linear convergence

S i=wgy1 —wg and v 1= VF(wgy1) — VF(wy),

T\ T 7 T

Uk S, Uk S}, Sk S,

Hppp  (I— =2 ) Hy(I- %) + 2
S i Uk S k Uk S ke Uk




Gauss-Newton Methods

e Minimize second-order Taylor series expansion

G.Sf(wkifﬁ) = LH Z T (Wi € )T Hy(wi: Eki) Tn(wis €k )



Natural Gradient Methods

e Invariant to all invertible transformations
e Gradient descent over prediction functions

w41 = argmin F(w) s.t. %(u — wi)TG(wi) (w — wy) <.
we W

1
Wy41 = arg min VF(wk)T(w —wy) + —Z—(u, — urk)TG(urk)('u? —wy,)
weW &7

Wit = wg — apG " (wi) VF (wy,)

G(w) := Ep, [‘92 log(”;w(ﬁ))] _E, [(6log(hw(z))) (alog_(hw(r)))?"]

ow ow




Diagonal Scaling Methods

e Rescale search direction using diagonal transformation

e Examples
o RMSProp
o AdaGrad
e Structural Methods

o Batch Normalization



