Summary of Two NIPS 2015 Deep Learning Optimization
Papers

Muthu Chidambaram
Department of Computer Science, University of Virginia

https://gdata.qgithub.io/deep2Read/

https://qdata.github.io/deep2Read/

Hessian-free Optimization for Learning Deep
Multidimensional Recurrent Neural Networks

e Authors: Minhyung Cho, Chandra Shekhar Dir, Jaehyung Lee

e Proposes method to overcome difficulty of training
multidimensional recurrent neural network (MDRNN) using
Hessian-free optimization

e MDRNNs have not kept up in depth with typical feedforward
neural networks, aims to address that via Hessian-free
optimization

Hessian-free Optimization for Learning Deep
Multidimensional Recurrent Neural Networks

e MDRNN’s are a generalization of RNN’s that have recurrent
connections corresponding to the number of dimensions of
the data

e Sequence labeling task uses connectionist temporal
classification (CTC) as objective function

e Hessian-free optimization minimizes objective function by
constructing and minimizing a local quadratic
approximation (loss function L, curvature approx. G)

s N
0, = 0 — 40, Qn(g) = E(gn) + v(iﬁl(;r" On + EOIGO”

Hessian-free Optimization for Learning Deep
Multidimensional Recurrent Neural Networks

- KT
: : : Heon = JGHedy +) [JeliHin,
e Hessian of the objective: Z;

e Approximation to the Hessian: Geow=JyHcly
o Since it may not be positive semidefinite

e GGN can be written as: Geonw = Y JNHedn,:

e Convex approximation for CTC derived from GGN
approximation

Hessian-free Optimization for Learning Deep
Multidimensional Recurrent Neural Networks

e CTC: Mapping from an output sequence a to scalar loss
o Output activations at time t are normalized using softmax

e Conditional probability of the path pi is product of
label probabilities at each timestep

e CTC loss function 1is sum of product of softmax components
o Target sequence z

e CTC objective is reformulated to separate non-convexity

R plrla) = Hy- £(a) = ~ logp(zia).

Hessian-free Optimization for Learning Deep
Multidimensional Recurrent Neural Networks

e Reformulated CTC function: £la)=£LcoNc(a)
e GGN approximation of reformulated CTC function gives a
convex approximation for Hessian of CTC

.. . exp(fz)
GCroN'(- — J.,Ir HErJ.N"r ‘CP(F) ~ log (ZZ'ES GXD(fz')) £C(F) - log ZZ'ES exp(fz,) ==3lask log (Z CX])(fz'))

z'eS

l. Hg = He_on, 1s not positive semidefinite.
2. Gioon. = G, on, 1s positive semidefinite, but not computationally tractable.

3. Hg,on; is positive semidefinite and computationally tractable.

Hessian-free Optimization for Learning Deep
Multidimensional Recurrent Neural Networks

e GGN 1is 1identical to Fisher information matrix
e Proposed approximation has expectation-maximization
interpretation

o dlogp(lja)\ " [/ alogp(lja)
_;"l 'Z JM“‘I'\'I(IH) (T dat J-'\"t

p(w x.é)
Y reB—1(P(7Ix.0)°

= Ex [Z J\” dlag }"”}/'T)JJV’

Expectation step calculates: v ix; =
Maximization step updates: - argmax,Q(f), where Q(0) =3 __g-1.5 Vrixz logp(7[x, 0).

Ho, = diag(Y?) — Yty*t'

Hessian-free Optimization for Learning Deep
Multidimensional Recurrent Neural Networks

e Datasets used: IFN/ENIT Database of handwritten arabic
words, TIMIT corpus for speech recognition

e Experiment setup: Evaluated against stochastic gradient
descent using LSTM networks

e Conclusion: Applying Hessian-free optimization to a
convex approximation of the CTC loss function led to
significant improvements 1in handling handwriting
recognition

Hessian-free Optimization for Learning Deep
Multidimensional Recurrent Neural Networks

Table 1: Experimental results for Arabic offline handwriting recognition. The label error rate is
presented with the different network depths. AZ denotes a stack of B layers having A hidden
LSTM cells in each layer. “Epochs™ is the number of epochs required by the network using HF
optimization so that the stopping criteria are fulfilled. ¢ is the learning rate and p is the momentum.

NETWORKS DEPTH WEIGHTS | HF (%) EPOCHS | SGD (%) {e€, it}

2-10-50 3 159,369 | 6.10 77 9.57 {10-7.0.9}
2-10-21° 5 157,681 5.85 90 9.19 {107°,0.99}
2-10-14° 8 154,209 | 4.98 140 9.67 {10~%,0.95}
2-10-12% 10 154,153 | 4.95 109 9.25 {107%,0.95}
2-10-10" 13 150,169 4.50 84 10.63 {107%,0.9}
2-10-9'3 15 145,417 5.69 84 1229 {107%,0.99}

Table 2: Experimental results for phoneme recognition using the TIMIT corpus. PER is presented
with the different MDRNN architectures (depth x block x cell/block). o is the standard deviation
of Gaussian weight noise. The remaining parameters are the same as in Table [T}

NETWORKS WEIGHTS | HF (%) EPOCHS {a} SGD (%) {e, I, a}
3x20x10 771,542 | 20.14 22 {0.03} | 2096 {107°,0.99,0.05}
5x15x 10 795,752 | 19.18 30 {0.05} | 20.82 {107%,09,0.04}
8x11x 10 720,826 | 19.09 29 {0.05} 19.68 {107%,0.9,0.04 }
10x10x10 755,822 | 18.79 60 {0.04} 18.46 {107°,0.95,0.04}
13x9x 10 806,588 | 18.59 93 {0.05} 18.49 {107°,0.95,0.04}
15x8x 10 741,230 | 18.54 50 {0.04} 19.09 {107°,0.95,0.03}
3 x 250 x 17 3.8M 18.6 {107%,0.9,0.075 }
5x 250 x 17 6.8M 18.4 {107, 0.9,0.075 }

Path-SGD: Path Normalized Optimization in Deep Neural
Networks

e Authors: Behnam Neyshabur, Ruslan Salakhutdinov, Nathan
Srebro

e Proposes an approximate steepest descent method with
respect to a path-wise regularizer

e Investigates whether L2 geometry 1is the appropriate
geometry for the space of deep neural networks

Path-SGD: Path Normalized Optimization in Deep Neural
Networks

e Considers geometry inspired by max-norm regularization
o Uses minimum max—-norm over all rescalings of weights to achieve
rescaling invariance
e Focuses specifically on networks using RELU activation

function
o Due to RELU activation having non-negative homogeneity

e Rescaling function multiplies incoming edges by c and

outgoing edges by 1/c i ey TS0
lz’(Ux—WzJ . {

L. e
Eu"(ul—N‘E_) u); = v,

Wi, —uy) Otherwise.

Path-SGD: Path Normalized Optimization in Deep Neural
Networks

 ER = 10+ ~104

[<

3 —Baancad

2 —Unbalancad) 1 100 ~100
g 5 »] = »
gLa 1 SaiieRs Y u::. v
g 1

u 1 u

05
o, o : s -
Epoch
(a) Training on MNIST (b) Weight explosion in an unbalanced networl\
i INC T
Upaste Rescatng Bt
u V ~

(c) Poorupdates in an unbalanced network

Figure 1: (a): Evolution of the cross-entropy error function when training a feed-forward network on MNIST
with two hidden layers, each containing 4000 hidden units. The unbalanced initialization (blue curve) is gener-
ated by applying a sequence of rescaling functions on the balanced initializations (red curve). (b): Updates for
a simple case where the input is = = 1, thresholds are set to zero (constant), the stepsize is |, and the gradient
with respect to output is = —1. (c¢): Updated network for the case where the mput is x = (1, 1), thresholds
are set to zero (constant), the stepsize is 1, and the gradient with respect to output is 6 = (—1, —l)

Path-SGD: Path Normalized Optimization in Deep Neural
Networks

1 |
Goal is to minimize objective of the form: Llw) =2 ffulw).v)
Updates are of the form: w(*) =w® 4+ Awl+,
Gradient descent i1s not rescaling invariant

Balanced Network: incoming weights to different units are
roughly the same

o Gradient descent can “blow up” in unbalanced networks
Group norm and max norm

a/p\ /9 1/p
p
ta@)= || Y |wuow ppoo(w) =sup [D7 Juusy|”
veV \ (u—v)eE vEK (u—v)EE

Path-SGD: Path Normalized Optimization in Deep Neural
Networks

e Per-unit L2 regularization has been shown to be very

effective in the case of RELU activation functions
o Potentially due to rebalancing such that hidden units have same norm

He d
P »
) ¢p(w) = min (,u,,_‘x(z[;)>
w

ff)p(“") = “ﬂ(w)”P = (Z

Vin [!-]"_k’m:?"r,z___ﬁ{ Vout [,I}

d
k=1

; 1 2
w1 = argmin r)<VL(w“-)). w> + 5 | w(w) — w(w'?) (6)
w P
2/p
1 (1 d | i
— argn}Li'n r)<VL(w“-’). w> + 5 Z H We, — H wii’
\'—'i1z{£](_l>"lr_$°l'2---3"ou![] el L

= argmin J* (w)

Path-SGD: Path Normalized Optimization in Deep Neural
Networks

Algorithm 1 Path-SGDupdate rule

I: Vyevo Tn(v) =1 & Initialization
2: vl.'E‘ 0 Iom()—1

3: fori—=1tod do

4: Vlc\ 'm() Z(u—n)cE 'm(“) ll‘(ul)'

5: Vlc\ ’0U1) z(l—)ll)CElu(' u) “"(u)

6: end for

7 V(u—n)cE ((“" 1“)) T n() /IA'OUI()7/p

8 Veemwe) =we’ — st 2 (w®) > Update Rule

2/p
N P se1) o N 9L
p(w,e) = ([Z H |we |) w) =w, ot 2) — (w'?)

ald]- 5. v0u[] € FE

Path-SGD: Path Normalized Optimization in Deep Neural
Networks

e Compare PathSGD to SGD and AdaGrad

o Trained with both unbalanaced and balanced initializations
o Trained with and without dropout

Table 1: General information on datasets used in the experiments.

Data Set Dimensionality Classes Training Set Test Set
CIFAR-10 3072 (32 x 32 color) 10 50000 10000
CIFAR-100 3072 (32 x 32 color) 100 50000 10000

MNIST 784 (28 x 28 grayscale) 10 60000 10000

SVHN 3072 (32 x 32 color) 10 73257 26032

Path-SGD: Path Normalized Optimization in Deep Neural
Networks

Cross-Entropy Training Loss 0/1 Training Error 0/1 Test Error
= 02 06
— Path-SGD - Unbalanced)
—-SGD - Balanced
o 0.15
o 1.
£
—
o
& 0.05
0 20 40 60 80 100 O
0.08}
o]
o
ot 0.06
o
& 0.04
o 1 0.02
0 20 40 60 80 100

Path-SGD: Path Normalized Optimization in Deep Neural

Networks

MNIST

SVHN

25 00 003

0.01 00
1. .
. - 001 - 0.025
1

0.00 002}
0.
T TRE RE e e W R e R R 8 e 20 40 60 80 100
R 02 02

0.19
0.15
0.1

- 04 0.7
: [0.16

0.05
0. 0.15

b

0 0.14
0 20 40 60 80 100 © 20 40 60 80 100 20 40 60 80 100

Epoch Epoch Epoch

Figure 2: Learning curves using different optimization methods for 4 datasets without dropout. Left panel
displays the cross-entropy objective function; middle and right panels show the corresponding values of the
training and test errors, where the values are reported on different epochs during the course of optimization.

Best viewed in color.

Path-SGD: Path Normalized Optimization in Deep Neural

Networks

CIFAR-10

CIFAR-100

2.5 a
o - ——Path-SGD + Dropout]|
~==SGD + Dropout
03 05 - AdaGrad + Dropout
1.
- * 0.2} * 0.45
1
LA

Cross-Entropy Training Loss (/1 Training Error 0/1 Test Error

0 0 04
20 60 00 % 20 40 60 80 100°°% 20 40 60 80 100

0 08

0.6} 0.75

44 07

0.2 0.65

1

w— [
il 20 40 60 80 100 © 20 40 6 80 100°% 20 4 6 8 100

Path-SGD: Path Normalized Optimization in Deep Neural
Networks

0.035

0034

' 0.025

0,0]
01)11’

20 40 60 80 100

MNIST

0.18
0.17
0.
0.16
1.
Z. . - 0.2} - 0.15
= 1
- 0.14
wn 0.1}
0. 0.13

0.12
) 20 30 60 80 joo0 © 20 40 60 80 100 0 20 40 60 80 100
Epoch Epoch Epoch

Figure 3: Learning curves using different optimization methods for 4 datasets with dropout. Left panel dis-
plays the cross-entropy objective function: middle and right panels show the corresponding values of the train-
ing and test errors. Best viewed in color.

Path-SGD: Path Normalized Optimization in Deep Neural
Networks

e Conclusion: Path-SGD allows effective handling of
balanced and unbalanced RELU networks, and can
potentially be combined with AdaGrad update for even
better results

o Path-SGD can be viewed as tractable approximation of natural gradient
e Future Work: Could consider other geometries, as well as
alternatives to steepest descent

References

e https://papers.nips.cc/paper/5797-path-sgd-path-normalize
d-optimization-in-deep-neural-networks.pdf

e https://papers.nips.cc/paper/5664-hessian-free-optimizati
on—-for-learning-deep-multidimensional-recurrent-neural-ne
tworks.pdf

https://papers.nips.cc/paper/5797-path-sgd-path-normalized-optimization-in-deep-neural-networks.pdf
https://papers.nips.cc/paper/5797-path-sgd-path-normalized-optimization-in-deep-neural-networks.pdf
https://papers.nips.cc/paper/5664-hessian-free-optimization-for-learning-deep-multidimensional-recurrent-neural-networks.pdf
https://papers.nips.cc/paper/5664-hessian-free-optimization-for-learning-deep-multidimensional-recurrent-neural-networks.pdf
https://papers.nips.cc/paper/5664-hessian-free-optimization-for-learning-deep-multidimensional-recurrent-neural-networks.pdf

