Summary of Paper: FitNets: Hints For Thin Deep Nets (ICLR 2015)

Muthu Chidambaram

Department of Computer Science, University of Virginia

https://qdata.github.io/deep2Read/

Greedy Layer-Wise Training of Deep Networks (2006)

- Authors: Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle
- Greedy layer-wise unsupervised training can aid optimization by obtaining a good weight initialization
- Deep architectures require exponentially fewer parameters to express similar capacities as shallow architectures

- Authors: Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, Yoshua Bengio
- Use outputs of teacher network to train deeper student network
- Wide and deep networks are memory/runtime intensive
- Builds off Knowledge Distillation: compresses ensemble of deep networks into a student network of similar depth

- Literature supports deep architectures for better representation learning
- Recent optimization work has involved guiding intermediate layers
- Extends Knowledge Distillation using intermediate hints

- T is teacher network, S is student network, a_T represents average pre-softmax outputs, Tau is relaxation constant for softening signal
- Hint layer: middle layer of teacher network, guided layer: middle layer of student network
- Train up to guided layer using Lht loss, train after using Lkd loss

$$\mathbf{P}_{\mathrm{T}}^{\tau} = \operatorname{softmax}\left(\frac{\mathbf{a}_{T}}{\tau}\right), \quad \mathbf{P}_{\mathrm{S}}^{\tau} = \operatorname{softmax}\left(\frac{\mathbf{a}_{S}}{\tau}\right) \qquad \mathcal{L}_{HT}(\mathbf{W}_{\mathbf{Guided}}, \mathbf{W}_{\mathbf{r}}) = \frac{1}{2}||u_{h}(\mathbf{x}; \mathbf{W}_{\mathbf{Hint}}) - r(v_{g}(\mathbf{x}; \mathbf{W}_{\mathbf{Guided}}); \mathbf{W}_{\mathbf{r}})||^{2}$$

 $\mathcal{L}_{KD}(\mathbf{W}_{\mathbf{S}}) = \mathcal{H}(\mathbf{y}_{\mathbf{true}}, \mathbf{P}_{\mathbf{S}}) + \lambda \mathcal{H}(\mathbf{P}_{\mathbf{T}}^{\tau}, \mathbf{P}_{\mathbf{S}}^{\tau}),$

_ __ __

Figure 1: Training a student network using hints.

Algorithm 1 FitNet Stage-Wise Training.

The algorithm receives as input the trained parameters W_T of a teacher, the randomly initialized parameters W_S of a FitNet, and two indices h and g corresponding to hint/guided layers, respectively. Let W_{Hint} be the teacher's parameters up to the hint layer h. Let W_{Guided} be the FitNet's parameters up to the guided layer g. Let W_r be the regressor's parameters. The first stage consists in pre-training the student network up to the guided layer, based on the prediction error of the teacher's hint layer (line 4). The second stage is a KD training of the whole network (line 6).

```
Input: W<sub>S</sub>, W<sub>T</sub>, g, h

Output: W<sub>S</sub><sup>*</sup>

1: W<sub>Hint</sub> \leftarrow \{W_T^1, \dots, W_T^h\}

2: W<sub>Guided</sub> \leftarrow \{W_S^1, \dots, W_S^g\}

3: Intialize W<sub>r</sub> to small random values

4: W<sup>*</sup><sub>Guided</sub> \leftarrow \underset{W_{Guided}}{\operatorname{argmin}} \mathcal{L}_{HT}(W_{Guided}, W_r)

5: \{W_S^1, \dots, W_S^g\} \leftarrow \{W_{Guided}^{*1}, \dots, W_{Guided}^{*g}\}

6: W<sup>*</sup><sub>S</sub> \leftarrow \underset{W_S}{\operatorname{argmin}} \mathcal{L}_{KD}(W_S)
```

- Hint-based training with knowledge distillation can be seen as curriculum learning
- Student-teacher model is a generic curriculum learning approach
 - Decay lambda in loss to decrease influence of easier examples (ones teacher has high degree of confidence in)
- Tested on CIFAR-10, CIFAR-100, SVHN, MNIST, AFLW

Algorithm # params		Accuracy	
Compression			
FitNet	FitNet ~2.5M		
Teacher	Teacher ~9M		
Mimic single ~54M		84.6%	
Mimic single ~70M		84.9%	
Mimic ensemble ~70M		85.8%	
State-of-the-art me	thods		
Maxout		90.65%	
Network in Network		91.2%	
Deeply-Supervised Networks		91.78%	
Deeply-Supervised Networks (19)		88.2%	

Table 1: Accuracy on CIFAR-10

Algorithm	# params	Accuracy	
Compression			
FitNet ~2.5M		64.96%	
Teacher ~9M		63.54%	
State-of-the-a	rt methods		
Maxout		61.43%	
Network in Network		64.32%	
Deeply-Supervised Networks		65.43%	

Table 2: Accuracy on CIFAR-100

Algorithm	# params	Misclass
Compression		
FitNet	~1.5M	2.42%
Teacher	~4.9M	2.38%
State-of-the-a	rt methods	n Na seco
Maxout		2.47%
Network in Network		2.35%
Deeply-Supervised Networks		1.92%

Table 3: SVHN error

Algorithm	# params	Misclass
Compression	-	
Teacher	~361K	0.55%
Standard backprop	$\sim 30 \text{K}$	1.9%
KD	~30K	0.65%
FitNet	0.51%	
State-of-the-art meth	iods	
Maxout		0.45%
Network in Network		0.47%
Deeply-Supervised Networks		0.39%

Table 4: MNIST error

_ __ __

Figure 2: Comparison of Standard Back-Propagation, Knowledge Distillation and Hint-based Training on CIFAR-10.

Network	# layers	# params	# mult	Acc	Speed-up	Compression rate
Teacher	5	~9M	~725M	90.18%	1	1
FitNet 1	11	~250K	$\sim 30M$	89.01%	13.36	36
FitNet 2	11	~862K	$\sim 108M$	91.06%	4.64	10.44
FitNet 3	13	~1.6M	~392M	91.10%	1.37	5.62
FitNet 4	19	~2.5M	~382M	91.61%	1.52	3.60

Table 5: Accuracy/Speed Trade-off on CIFAR-10.

- Hint-based Training can be used to provide better initialization for optimization
- Difference between KD and HT: HT provides a "starting point" in the parameter space using hints
- Conclusion: HT provides a means of compressing networks by more than 10x while maintaining accuracy

References

http://arxiv.org/pdf/1412.6550v4.pdf