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Greedy Layer-Wise Training of Deep Networks (2006)

Authors: Yoshua Bengio, Pascal Lamblin, Dan Popovici,
Hugo Larochelle

Greedy layer-wise unsupervised training can aid
optimization by obtaining a good weight initialization
Deep architectures require exponentially fewer parameters
to express similar capacities as shallow architectures



FitNets: Hints For Thin Deep Nets (ICLR 2015)

Authors: Adriana Romero, Nicolas Ballas, Samira Ebrahimi
Kahou, Antoine Chassang, Carlo Gatta, Yoshua Bengio

Use outputs of teacher network to train deeper student
network

Wide and deep networks are memory/runtime intensive
Builds off Knowledge Distillation: compresses ensemble of
deep networks into a student network of similar depth
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e Literature supports deep architectures for better
representation learning

e Recent optimization work has involved guiding
intermediate layers

e Extends Knowledge Distillation using intermediate hints
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e T is teacher network, S is student network, a_T
represents average pre-softmax outputs, Tau is relaxation
constant for softening signal

e Hint layer: middle layer of teacher network, guided
layer: middle layer of student network

e Train up to guided layer using Lht loss, train after
using Lkd loss
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Figure 1: Training a student network using hints.
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Algorithm 1 FitNet Stage-Wise Training.

The algorithm receives as input the trained parameters W of a teacher, the randomly initialized
parameters Wg of a FitNet, and two indices & and g corresponding to hint/guided layers, respec-
tively. Let Wi be the teacher’s parameters up to the hintlayer &. Let W guidea be the FitNet’s
parameters up to the guided layer g. Let W, be the regressor’s parameters. The first stage consists in
pre-training the student network up to the guided layer, based on the prediction error of the teacher’s
hint layer (line 4). The second stage is a KD training of the whole network (line 6).

Input: Ws, Wr,g.h
Output: Wg
WhHint {WT’..-I- ., Wr"}
WGuided + {Ws ..., Ws?}
Intialize W, to small random values
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Hint-based training with knowledge distillation can be
seen as curriculum learning
Student-teacher model is a generic curriculum learning

approach

o Decay lambda in loss to decrease influence of easier examples (ones
teacher has high degree of confidence 1in)

Tested on CIFAR-10, CIFAR-100, SVHN, MNIST, AFLW
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| Algorithm | 7 params | Accuracy |
Compression
FitNet ~2.5M 91.61'%
Teacher ~9M 90.18%
Mimic single ~54M 84.6% | Algorithm | 7 params | Accuracy |
Mimic single ~70M 84.9% Compression
Mimic ensemble ~70M 85.8% FitNet ~2.5M 64.96'/
State-of-the-art methods Teacher ~9M 63.54%
Maxout 90.65% State-of-the-art methods
Network in Network 91.2% Maxout 61.43%
Deeply-Supervised Networks 91.78% Network in Network 64.32%
Deeply-Supervised Networks (19) 88.2% Deeply-Supervised Networks | 65.43%

Table 1: Accuracy on CIFAR-10 Table 2: Accuracy on CIFAR-100
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| Algorithm | # params | Misclass |
Compression

| Algorithm | 3 params | Misclass | Teacher ~36IK | 0.55%

Compression Standard backprop ~30K 1.9%
FitNet ~1.5M 2.42% KD ~30K 0.65%
Teacher ~4.9M 2.387% FitNet ~30K 0.51%

State-of-the-art methods State-of-the-art methods

Maxout 247% Maxout 0.45%
Network in Network 2.35% Network in Network 0.47%
Deeply-Supervised Networks | 1.92% Deeply-Supervised Networks 0.39%

Table 3: SVHN error Table 4: MNIST error
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Figure 2: Comparison of Standard Back-Propagation, Knowledge Distillation and Hint-based Train-
ing on CIFAR-10.

| Network | # layers | # params | 7 mult | Acc | Speed-up | Compression rate |

Teacher 5 ~9M ~725M | 90.18% I I
FitNet | 11 ~250K ~30M 89.01% 13.36 36
FitNet 2 11 ~862K ~108M | 91.06% 4.64 10.44
FitNet 3 13 ~1.6M ~392M | 91.10% 1.37 5.62
FitNet4 19 ~2.5M ~382M | 91.61% 1.52 3.60

Table 5: Accuracy/Speed Trade-off on CIFAR-10.
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Hint-based Training can be used to provide better
initialization for optimization

Difference between KD and HT: HT provides a “starting
point” in the parameter space using hints

Conclusion: HT provides a means of compressing networks
by more than 10x while maintaining accuracy
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