Muthu Chidambaram

Department of Computer Science, University of Virginia https://qdata.github.io/deep2Read/

- Authors: Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, Daan Wierstra
- Aims to approach learning representations from little data by drawing from non-parametric approaches (KNN)
- Learns a network that maps a small labelled support set and an unlabelled example to its label

- Model architecture based on memory networks/pointer networks/attention models
- Casts one-shot learning as a set-to-set problem
 - Map from a small support set of k examples of image-label pairs S to a classifier C
 - Classifier defines probability distribution over output labels given a test example

- Computes labels for an unseen example x hat as $\hat{y} = \sum_{i=1}^{\kappa} a(\hat{x}, x_i) y_i$
 - X_i, y_i from support set, a is an attention mechanism
 - Attention mechanism subsumes both KDE and KNN, non-parametric in nature
- ullet F, g are embeddings: $a(\hat{x},x_i)=e^{c(f(\hat{x}),g(x_i))}/\sum_{j=1}^k e^{c(f(\hat{x}),g(x_j))}$
 - o I.e. word embedding model for NLP or CNN for images
- Embeddings are functions of entire support set as well as specific example

$$f(\hat{x}, S) = \text{attLSTM}(f'(\hat{x}), g(S), K)$$

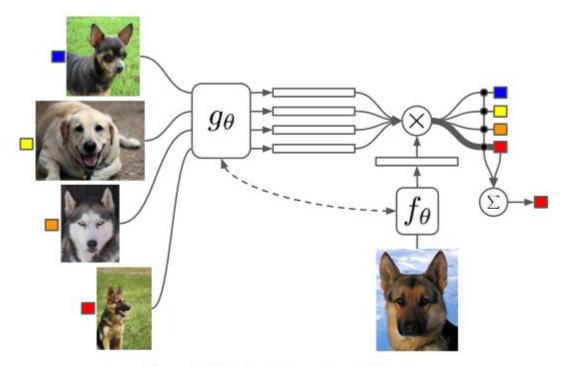


Figure 1: Matching Networks architecture

- Define a task T as a distribution over possible label sets L
- Use L to sample the support set S and batch B, matching net is trained to minimize error in batch B conditioned on S

$$\theta = \arg\max_{\theta} E_{L \sim T} \left[E_{S \sim L, B \sim L} \left[\sum_{(x, y) \in B} \log P_{\theta} \left(y | x, S \right) \right] \right]$$

- Experimenting done with k labelled examples from N classes not previously trained upon
 - Task is to classify a disjoint batch of unlabelled examples into one of these N classes
- Tested on Omniglot and ImageNet
- Baselines: raw pixel matching, matching on discriminative features, convolutional siamese net

Model	Matching Fn	Fine Tune	5-way Acc		20-way Acc	
			1-shot	5-shot	1-shot	5-shot
PIXELS	Cosine	N	41.7%	63.2%	26.7%	42.6%
BASELINE CLASSIFIER	Cosine	N	80.0%	95.0%	69.5%	89.1%
BASELINE CLASSIFIER	Cosine	Y	82.3%	98.4%	70.6%	92.0%
BASELINE CLASSIFIER	Softmax	Y	86.0%	97.6%	72.9%	92.3%
MANN (NO CONV) [21]	Cosine	N	82.8%	94.9%	-	· · · · · · · · ·
CONVOLUTIONAL SIAMESE NET [11]	Cosine	N	96.7%	98.4%	88.0%	96.5%
CONVOLUTIONAL SIAMESE NET [11]	Cosine	Y	97.3%	98.4%	88.1%	97.0%
MATCHING NETS (OURS)	Cosine	N	98.1%	98.9%	93.8%	98.5%
MATCHING NETS (OURS)	Cosine	Y	97.9%	98.7%	93.5%	98.7%

Table 1: Results on the Omniglot dataset.

Table 2: Results on miniImageNet.

Model	Matching Fn	Fine Tune	5-way Acc 1-shot 5-shot		
PIXELS	Cosine	N	23.0%	26.6%	
BASELINE CLASSIFIER	Cosine	N	36,6%	46.0%	
BASELINE CLASSIFIER	Cosine	Y	36.2%	52.2%	
BASELINE CLASSIFIER	Softmax	Y	38.4%	51.2%	
MATCHING NETS (OURS)	Cosine	N	41.2%	56.2%	
MATCHING NETS (OURS)	Cosine	Y	42.4%	58.0%	
MATCHING NETS (OURS)	Cosine (FCE)	N	44.2%	57.0%	
MATCHING NETS (OURS)	Cosine (FCE)	Y	46.6%	60.0%	

Table 3: Results on full ImageNet on rand and dogs one-shot tasks. Note that $\neq L_{rand}$ and $\neq L_{dogs}$ are sets of classes which are seen during training, but are provided for completeness.

Model	Matching Fn	Fine Tune	ImageNet 5-way 1-shot Acc				
			L_{rand}	$\neq L_{rand}$	L_{dogs}	$\neq L_{dogs}$	
PIXELS	Cosine	N	42.0%	42.8%	41.4%	43.0%	
INCEPTION CLASSIFIER	Cosine	N	87.6%	92.6%	59.8%	90.0%	
MATCHING NETS (OURS)	Cosine (FCE)	N	93.2%	97.0%	58.8%	96.4%	
INCEPTION ORACLE	Softmax (Full)	Y (Full)	≈ 99%	$\approx 99\%$	≈ 99%	≈ 99%	

1. O Vinyals, S Bengio, and M Kudlur. Order matters: Sequence to sequence for sets. arXiv preprint arXiv:1511.06391, 2015.

our process stock susses on an amenuon incommism ases are rono ining.

$$q_{t} = LSTM(q_{t-1}^{*}) \qquad (3)$$

$$e_{i,t} = f(m_{i}, q_{t}) \qquad (4)$$

$$a_{i,t} = \frac{\exp(e_{i,t})}{\sum_{j} \exp(e_{j,t})} \qquad (5)$$

$$r_{t} = \sum_{i} a_{i,t}m_{i} \qquad (6)$$

$$q_{t}^{*} = [q_{t} r_{t}] \qquad (7)$$

$$p_{t} = \sum_{i} a_{i,t}m_{i} \qquad (7)$$

Figure 1: The Read-Process-and-Write model.

where i indexes through each memory vector m_i (typically equal to the cardinality of X), q_t is a query vector which allows us to read r_t from the memories, f is a function that computes a single scalar from m_i and q_t (e.g., a dot product), and LSTM is an LSTM which computes a recurrent state but which takes no inputs. q_t^* is the state which this LSTM evolves, and is formed by concatenating the query q_t with the resulting attention readout r_t . t is the index which indicates how many "processing steps" are being carried to compute the state to be fed to the decoder. Note that permuting m_i and $m_{i'}$ has no effect on the read vector r_t .

O. End-To-End Memory Networks

https://arxiv.org/pdf/1503.08895v5.pdf

- 1. Sequence to sequence learning with neural networks

 https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
- 2. Meta-Learning with Memory-Augmented Neural Networks

http://jmlr.org/proceedings/papers/v48/santoro16.pdf

 Conclusion: Introducing specific one-shot loss and non-parametric structure in neural network models leads to significant gains in one-shot classification tasks