Reinforcement Learning on Testing

Presented by : Ji Gao

IDepartment of Computer Science, University of Virginia
https://qdata.github.io/deep2Read/

August 26, 2018

August 26, 2018 1/25


https://qdata.github.io/deep2Read/

Overview

© Learn&Fuzz: Machine Learning for Input Fuzzing

© Deep Reinforcement Fuzzing

August 26, 2018 2/25



Outline

© Learn&Fuzz: Machine Learning for Input Fuzzing

Learn&Fuzz: Machine Learning for Input Fuzzing August 26, 2018 3/25



Learn&Fuzz: Machine Learning for Input Fuzzing

Abstract: Fuzzing consists of repeatedly testing an application with modified, or fuzzed, inputs
with the goal of finding security vulnerabilities in input-parsing code. In this paper, we show how
to automate the generation of an input grammar suitable for input fuzzing using sample inputs
and neural-network-based statistical machine-learning techniques. We present a detailed case
study with a complex input format, namely PDF, and a large complex security-critical parser for
this format, namely, the PDF parser embedded in Microsofts new Edge browser. We discuss
(and measure) the tension between conflicting learning and fuzzing goals: learning wants to
capture the structure of well-formed inputs, while fuzzing wants to break that structure in order
to cover unexpected code paths and find bugs. We also present a new algorithm for this
learn&fuzz challenge which uses a learnt input probability distribution to intelligently guide

where to fuzz inputs.

Learn&Fuzz: Machine Learning for Input Fuzzing August 26, 2018 4/25



@ Grammar based fuzzing: Knows the grammar of the model

o Claimed as most effective fuzzing technique known today for fuzzing
applications

@ This work: Learn a generative language model over the set of PDF
object characters given a large corpus of objects

Learn&Fuzz: Machine Learning for Input Fuzzing August 26, 2018 5/25



PDF format

Xrer

. trailer
2 0 obj 06 <<
<< 0000000000 65535 f /Size 18
/Type /Pages 0000000010 00000 n /Info 17 0 R
/Kids [ 3 0 R ] 0000000059 00000 n /Root 1 0 R
/Count 1 0000000118 00000 n
>> 0000000296 00000 n ziartxref
endobj 0000000377 00000 n 3661

0000000395 00000 n
(a) (b) (c)

Fig. 1. Excerpts of a well-formed PDF document. (a) is a sample object, (b) is a
cross-reference table with one subsection, and (c) is a trailer.

@ A PDF body is composed of three sections: objects, cross-reference
table, and trailer.

Learn&Fuzz: Machine Learning for Input Fuzzing August 26, 2018 6 /25



125 0 obj 88 0 obj 75 0 obj

[680.6 680.6] (Related Work) 4171
endobj endobj endobj
(a) (b) (©)
47 1 obj
[false 170 85.5 (Hello) /My#20Name|
endobj
(@

Fig. 2. PDF data objects of different types.

@ Object: first line: ID + generation number + obj
@ marked by “endobj"”
o Different type of data inside

Learn&Fuzz: Machine Learning for Input Fuzzing August 26, 2018 7/25



Cross reference table

. trailer
2 0 obj 06 <
<< 0000000000 65535 f /Size 18
/Type /Pages 0000000010 00000 n /Info 17 0 R
/Kids [ 3 0 R ] 0000000059 00000 n /Root 1 0 R
/Count 1 0000000118 00000 n
>> 0000000296 00000 n ziartxref
endobj 0000000377 00000 n 3661

0000000395 00000 n
(a) (b) (c)

Fig. 1. Excerpts of a well-formed PDF document. (a) is a sample object, (b) is a
cross-reference table with one subsection, and (c) is a trailer.

@ Cross reference tables contain the address of referenced objects within
the document

@ 2nd number indicates previous free object

@ n = object in use, f = not used

Learn&Fuzz: Machine Learning for Input Fuzzing August 26, 2018 8/25



Xrer

2 0 obj 06
<< 0000000000 65535
/Type /Pages 0000000010 00000
/Kids [ 3 0 R ] 0000000059 00000
/Count 1 0000000118 00000
>> 0000000296 00000
endobj 0000000377 00000

0000000395 00000

(a) (b)

B BB BEBB -

trailer

<<

/Size 18
/Info 17 0 R
/Root 1 0 R
>>

startxref

3661
(c)

Fig. 1. Excerpts of a well-formed PDF document. (a) is a sample object, (b) is a

cross-reference table with one subsection, and (c) is a trailer.

@ a dictionary of information about the body

@ startxref which is the address of the cross-reference table.

Learn&Fuzz: Machine Learning for Input Fuzzing

August 26, 2018 9 /25




Seq2seq generation model

< / T y p

1 I I 1 1

- H |

I I I | I I | I

o b } < < / T y

YT ~ ~ -
Encoder RNN Decoder RNN

Fig. 3. A sequence-to-sequence RNN model to generate PDF objects.

@ Learn from objects

Learn&Fuzz: Machine Learning for Input Fuzzing August 26, 2018 10 / 25



Seq2seq generation model(Contd.)

Algorithm 1 SampleFuzz(D(x, ), truzz, Pt)
seq := “obj”
while — seq.endswith(“endobj”) do
¢,p(c) := sample(D(seq.f)) (* Sample ¢ from the learnt distribution *)
Psuzz = random(0, 1) (* random variable to decide whether to fuzz *)
if Ptuzz > teuzz N ’p(C) > P then
¢ := argmin,, {p(c¢’) ~ D(seq,#)} (* replace ¢ by ¢’ (with lowest likelihood) *)
end if
seq:=seq + ¢
if len(seq) > MAXLEN then
seq := “obj ” (* Reset the sequence *)
end if
end while
return seq

@ Do revised sampling to guarantee it provide well formed object

Learn&Fuzz: Machine Learning for Input Fuzzing August 26, 2018 11 /25



Experiment result

408000

407000

406000

405000

404000

403000

402000

401000

400000

458000
456000
54000
452000
450000
248000
245000
244000
442000
240000
438000
435000

host1

s

10 20

—e—sample

10 20

—+—Sample

30

—m—samplespace

host3

10

—m—SampleSpace

40

baseline

a0

baseline

525000

520000

515000

510000

500000

562000
560000
558000
556000

54000
52000
550000
548000
546000
544000
542000
540000

host2

10 20 30 40 50
—e—sample  —m—samplespace baseline
host123
3

10 20 30 10 50

—e—Sample —@—SampleSpace baseline

Fig. 6. Coverage for Sample and SampleSpace from 10 to 50 epochs, for host 1, 2,

3, and 123.

g for Input Fuzz




Outline

© Deep Reinforcement Fuzzing

Deep Reinforcement Fuzzing August 26, 2018 13 /25



Deep Reinforcement Fuzzing

ArXiv:1801.04589

Abstract: Fuzzing is the process of finding security vulnerabilities in input-processing code by
repeatedly testing the code with modified inputs. In this paper, we formalize fuzzing as a
reinforcement learning problem using the concept of Markov decision processes. This in turn
allows us to apply state-of-the-art deep Q-learning algorithms that optimize rewards, which we
define from runtime properties of the program under test. By observing the rewards caused by
mutating with a specific set of actions performed on an initial program input, the fuzzing agent
learns a policy that can next generate new higher-reward inputs. We have implemented this new
approach, and preliminary empirical evidence shows that reinforcement fuzzing can outperform

baseline random fuzzing.

Deep Reinforcement Fuzzing August 26, 2018 14 / 25



@ Fuzzing is the process of finding security vulnerabilities in
input-processing code by repeatedly testing the code with modified,
or fuzzed, inputs.

e Fuzzing heuristics: The algorithm to prioritize what (parts of) inputs
to fuzz next.
Can be pure random or optimizing for a specific goal, such as
maximizing code coverage.

@ Fuzzing ~ Adversarial sample.

Deep Reinforcement Fuzzing August 26, 2018 15 / 25



State-of-the-art Fuzzing

@ Proposed as a cheap technique.

@ Cheap and easy to be automatic implemented — One of the most
popular technique in testing

Deep Reinforcement Fuzzing August 26, 2018 16 / 25



State-of-the-art Fuzzing

@ Proposed as a cheap technique.

@ Cheap and easy to be automatic implemented — One of the most
popular technique in testing
@ State-of-the-art: coverage based.

e SAGE from Microsoft: Based on SMT solver.
One sentence: Build symbolic SMT equations on the branches and try
to optimize the coverage by solving them.

o AFL: Based on genetic programming.

Deep Reinforcement Fuzzing August 26, 2018 16 / 25



State-of-the-art Fuzzing

Proposed as a cheap technique.

Cheap and easy to be automatic implemented — One of the most
popular technique in testing

State-of-the-art: coverage based.

e SAGE from Microsoft: Based on SMT solver.
One sentence: Build symbolic SMT equations on the branches and try
to optimize the coverage by solving them.

o AFL: Based on genetic programming.

Been used on many large projects and found expensive bugs.

Deep Reinforcement Fuzzing August 26, 2018 16 / 25



Setting

r(z,a) T a

Fig. 1. Modeling Fuzzing as a Markov decision process.

M: Fuzzer

a: Fuzzing action
P: Target program
I: Input

Can be viewed as a RL process

Deep Reinforcement Fuzzing August 26, 2018 17 / 25



Reinforcement Learning

r(z,a) T a

Fig. 1. Modeling Fuzzing as a Markov decision process.

@ RL process: State set x € X, Action set a € A, Transition P
o Goal of the agent: Maximize the cumulative reward R =3 ;2 Y rei1

e Policy m(-|x)

Deep Reinforcement Fuzzing August 26, 2018 18 / 25



@ State: A string indicates program input

@ Action: Suppose to be | — (I x I, F, P). I: Sequence space. F:
o-algebra of the sample space, measurement of |. P: Probability for
given rules

e Reward: r(x,a) = E(x) + G(a)

In experiment E is defined as a combination of number of newly
discovered basic blocks, execution path length, and execution time of
the target.

Deep Reinforcement Fuzzing August 26, 2018 19 / 25



Process

@ Start with initial seed input x € /, unconstrained.
@ Initialize Q function as a deep neural net
@ After that:

Input: Program P

z ¢ Seed()
Q < Quet()

do:
2’ + State(z)
a + Action(z’, Q)
z 4+ Mutate(z, a)
r <+ Reward(P, 1)
Q@ + Update(Q,z',a,7)
z + Reset()

while (true)

Fig. 2. Reinforcement fuzzing algorithm.

Deep Reinforcement Fuzzing August 26, 2018 20 / 25



Process - Details

State(x): get a sub-string x’ at offset o and length | from state x.

Action(x',Q): Sampling current Q function on state xg to get an
actiona€ A

Mutate(x,a): Applying action a on x

Reward(): r(x,a) = E(x) + G(a)

Update: Update the Q function based on Reward. Use memory replay
(Xt, at, rt7Xt+1)

Reset: Set the input to a valid input.

Deep Reinforcement Fuzzing August 26, 2018 21 /25



Target: PDF

@ PDF: A complicated format, whose introduction has 1300 more pages

@ PDF document: a sequence of PDF bodies, each contains three
sections — objects, cross-reference table, and trailer

@ Test against pdftotext parser

Deep Reinforcement Fuzzing August 26, 2018 22 /25



Implementation

@ Actions:

e Random Bit Flips.

e Insert Dictionary Tokens: Tokens from a dictionary, which selects from
other valid input files

e Shift Offset and Width. Change offset and with.

o Shuffle: We define two actions for shuffling substrings. The first action
shuffles bytes within the pointer, the second action shuffles three
segments of the PDF object that is located around offset o.

e Copy Window. copy the x’ to a random place in x, considering both
overwrite and insert.

o Delete Window. Remove x'

Deep Reinforcement Fuzzing August 26, 2018 23 /25



Implementation

@ Reward: three different types: Code coverage, execution time and
combination of both.

@ Baseline: A fuzzer that random select actions in A.

@ Coverage: Use code coverage, measured using tools

Deep Reinforcement Fuzzing August 26, 2018 24 /25



Experiment

| Improvement
Reward functions
Code coverage 11 7.75%
Execution time 72 7%
Combined r3 11.3%
State width w = [2]
ro with w = 32 Bytes 1%
ro with w = 80 Bytes 3.1%
Generalization to new inputs
ro for new input x | 4.7%

TABLE I

THE IMPROVEMENTS COMPARED TO THE BASELINE (AS DEFINED
INVI-C1) IN THE MOST RECENT 500 ACCUMULATED REWARDS AFTER

TRAINING THE MODELS FOR 1000 GENERATIONS.

tanh

elu | softplus

sigmoid

softsign

relu

7.75%

6.56% | 5.3% 2%

6.4%

1.3%

Deep Reinforcement Fuzzing

August 26, 2018

25 / 25



	Learn&Fuzz: Machine Learning for Input Fuzzing
	Deep Reinforcement Fuzzing

