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Learn&Fuzz: Machine Learning for Input Fuzzing

Abstract: Fuzzing consists of repeatedly testing an application with modified, or fuzzed, inputs
with the goal of finding security vulnerabilities in input-parsing code. In this paper, we show how
to automate the generation of an input grammar suitable for input fuzzing using sample inputs
and neural-network-based statistical machine-learning techniques. We present a detailed case
study with a complex input format, namely PDF, and a large complex security-critical parser for
this format, namely, the PDF parser embedded in Microsofts new Edge browser. We discuss
(and measure) the tension between conflicting learning and fuzzing goals: learning wants to
capture the structure of well-formed inputs, while fuzzing wants to break that structure in order
to cover unexpected code paths and find bugs. We also present a new algorithm for this
learn&fuzz challenge which uses a learnt input probability distribution to intelligently guide

where to fuzz inputs.
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@ Grammar based fuzzing: Knows the grammar of the model

o Claimed as most effective fuzzing technique known today for fuzzing
applications

@ This work: Learn a generative language model over the set of PDF
object characters given a large corpus of objects
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PDF format

Xrer

. trailer
2 0 obj 06 <<
<< 0000000000 65535 f /Size 18
/Type /Pages 0000000010 00000 n /Info 17 0 R
/Kids [ 3 0 R ] 0000000059 00000 n /Root 1 0 R
/Count 1 0000000118 00000 n
>> 0000000296 00000 n ziartxref
endobj 0000000377 00000 n 3661

0000000395 00000 n
(a) (b) (c)

Fig. 1. Excerpts of a well-formed PDF document. (a) is a sample object, (b) is a
cross-reference table with one subsection, and (c) is a trailer.

@ A PDF body is composed of three sections: objects, cross-reference
table, and trailer.
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125 0 obj 88 0 obj 75 0 obj

[680.6 680.6] (Related Work) 4171
endobj endobj endobj
(a) (b) (©)
47 1 obj
[false 170 85.5 (Hello) /My#20Name|
endobj
(@

Fig. 2. PDF data objects of different types.

@ Object: first line: ID + generation number + obj
@ marked by “endobj"”
o Different type of data inside
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Cross reference table

. trailer
2 0 obj 06 <
<< 0000000000 65535 f /Size 18
/Type /Pages 0000000010 00000 n /Info 17 0 R
/Kids [ 3 0 R ] 0000000059 00000 n /Root 1 0 R
/Count 1 0000000118 00000 n
>> 0000000296 00000 n ziartxref
endobj 0000000377 00000 n 3661

0000000395 00000 n
(a) (b) (c)

Fig. 1. Excerpts of a well-formed PDF document. (a) is a sample object, (b) is a
cross-reference table with one subsection, and (c) is a trailer.

@ Cross reference tables contain the address of referenced objects within
the document

@ 2nd number indicates previous free object

@ n = object in use, f = not used
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Xrer

2 0 obj 06
<< 0000000000 65535
/Type /Pages 0000000010 00000
/Kids [ 3 0 R ] 0000000059 00000
/Count 1 0000000118 00000
>> 0000000296 00000
endobj 0000000377 00000

0000000395 00000

(a) (b)

B BB BEBB -

trailer

<<

/Size 18
/Info 17 0 R
/Root 1 0 R
>>

startxref

3661
(c)

Fig. 1. Excerpts of a well-formed PDF document. (a) is a sample object, (b) is a

cross-reference table with one subsection, and (c) is a trailer.

@ a dictionary of information about the body

@ startxref which is the address of the cross-reference table.
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Seq2seq generation model
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Fig. 3. A sequence-to-sequence RNN model to generate PDF objects.

@ Learn from objects
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Seq2seq generation model(Contd.)

Algorithm 1 SampleFuzz(D(x, ), truzz, Pt)
seq := “obj”
while — seq.endswith(“endobj”) do
¢,p(c) := sample(D(seq.f)) (* Sample ¢ from the learnt distribution *)
Psuzz = random(0, 1) (* random variable to decide whether to fuzz *)
if Ptuzz > teuzz N ’p(C) > P then
¢ := argmin,, {p(c¢’) ~ D(seq,#)} (* replace ¢ by ¢’ (with lowest likelihood) *)
end if
seq:=seq + ¢
if len(seq) > MAXLEN then
seq := “obj ” (* Reset the sequence *)
end if
end while
return seq

@ Do revised sampling to guarantee it provide well formed object
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Experiment result
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Fig. 6. Coverage for Sample and SampleSpace from 10 to 50 epochs, for host 1, 2,

3, and 123.
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Deep Reinforcement Fuzzing

ArXiv:1801.04589

Abstract: Fuzzing is the process of finding security vulnerabilities in input-processing code by
repeatedly testing the code with modified inputs. In this paper, we formalize fuzzing as a
reinforcement learning problem using the concept of Markov decision processes. This in turn
allows us to apply state-of-the-art deep Q-learning algorithms that optimize rewards, which we
define from runtime properties of the program under test. By observing the rewards caused by
mutating with a specific set of actions performed on an initial program input, the fuzzing agent
learns a policy that can next generate new higher-reward inputs. We have implemented this new
approach, and preliminary empirical evidence shows that reinforcement fuzzing can outperform

baseline random fuzzing.
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@ Fuzzing is the process of finding security vulnerabilities in
input-processing code by repeatedly testing the code with modified,
or fuzzed, inputs.

e Fuzzing heuristics: The algorithm to prioritize what (parts of) inputs
to fuzz next.
Can be pure random or optimizing for a specific goal, such as
maximizing code coverage.

@ Fuzzing ~ Adversarial sample.
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State-of-the-art Fuzzing

@ Proposed as a cheap technique.

@ Cheap and easy to be automatic implemented — One of the most
popular technique in testing
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State-of-the-art Fuzzing

@ Proposed as a cheap technique.

@ Cheap and easy to be automatic implemented — One of the most
popular technique in testing
@ State-of-the-art: coverage based.

e SAGE from Microsoft: Based on SMT solver.
One sentence: Build symbolic SMT equations on the branches and try
to optimize the coverage by solving them.

o AFL: Based on genetic programming.
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State-of-the-art Fuzzing

Proposed as a cheap technique.

Cheap and easy to be automatic implemented — One of the most
popular technique in testing

State-of-the-art: coverage based.

e SAGE from Microsoft: Based on SMT solver.
One sentence: Build symbolic SMT equations on the branches and try
to optimize the coverage by solving them.

o AFL: Based on genetic programming.

Been used on many large projects and found expensive bugs.
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Setting

r(z,a) T a

Fig. 1. Modeling Fuzzing as a Markov decision process.

M: Fuzzer

a: Fuzzing action
P: Target program
I: Input

Can be viewed as a RL process
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Reinforcement Learning

r(z,a) T a

Fig. 1. Modeling Fuzzing as a Markov decision process.

@ RL process: State set x € X, Action set a € A, Transition P
o Goal of the agent: Maximize the cumulative reward R =3 ;2 Y rei1

e Policy m(-|x)
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@ State: A string indicates program input

@ Action: Suppose to be | — (I x I, F, P). I: Sequence space. F:
o-algebra of the sample space, measurement of |. P: Probability for
given rules

e Reward: r(x,a) = E(x) + G(a)

In experiment E is defined as a combination of number of newly
discovered basic blocks, execution path length, and execution time of
the target.
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Process

@ Start with initial seed input x € /, unconstrained.
@ Initialize Q function as a deep neural net
@ After that:

Input: Program P

z ¢ Seed()
Q < Quet()

do:
2’ + State(z)
a + Action(z’, Q)
z 4+ Mutate(z, a)
r <+ Reward(P, 1)
Q@ + Update(Q,z',a,7)
z + Reset()

while (true)

Fig. 2. Reinforcement fuzzing algorithm.
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Process - Details

State(x): get a sub-string x’ at offset o and length | from state x.

Action(x',Q): Sampling current Q function on state xg to get an
actiona€ A

Mutate(x,a): Applying action a on x

Reward(): r(x,a) = E(x) + G(a)

Update: Update the Q function based on Reward. Use memory replay
(Xt, at, rt7Xt+1)

Reset: Set the input to a valid input.
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Target: PDF

@ PDF: A complicated format, whose introduction has 1300 more pages

@ PDF document: a sequence of PDF bodies, each contains three
sections — objects, cross-reference table, and trailer

@ Test against pdftotext parser
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Implementation

@ Actions:

e Random Bit Flips.

e Insert Dictionary Tokens: Tokens from a dictionary, which selects from
other valid input files

e Shift Offset and Width. Change offset and with.

o Shuffle: We define two actions for shuffling substrings. The first action
shuffles bytes within the pointer, the second action shuffles three
segments of the PDF object that is located around offset o.

e Copy Window. copy the x’ to a random place in x, considering both
overwrite and insert.

o Delete Window. Remove x'
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Implementation

@ Reward: three different types: Code coverage, execution time and
combination of both.

@ Baseline: A fuzzer that random select actions in A.

@ Coverage: Use code coverage, measured using tools
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Experiment

| Improvement
Reward functions
Code coverage 11 7.75%
Execution time 72 7%
Combined r3 11.3%
State width w = [2]
ro with w = 32 Bytes 1%
ro with w = 80 Bytes 3.1%
Generalization to new inputs
ro for new input x | 4.7%

TABLE I

THE IMPROVEMENTS COMPARED TO THE BASELINE (AS DEFINED
INVI-C1) IN THE MOST RECENT 500 ACCUMULATED REWARDS AFTER

TRAINING THE MODELS FOR 1000 GENERATIONS.

tanh

elu | softplus

sigmoid

softsign

relu

7.75%

6.56% | 5.3% 2%

6.4%

1.3%
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