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Learn&Fuzz: Machine Learning for Input Fuzzing

Abstract: Fuzzing consists of repeatedly testing an application with modified, or fuzzed, inputs

with the goal of finding security vulnerabilities in input-parsing code. In this paper, we show how

to automate the generation of an input grammar suitable for input fuzzing using sample inputs

and neural-network-based statistical machine-learning techniques. We present a detailed case

study with a complex input format, namely PDF, and a large complex security-critical parser for

this format, namely, the PDF parser embedded in Microsofts new Edge browser. We discuss

(and measure) the tension between conflicting learning and fuzzing goals: learning wants to

capture the structure of well-formed inputs, while fuzzing wants to break that structure in order

to cover unexpected code paths and find bugs. We also present a new algorithm for this

learn&fuzz challenge which uses a learnt input probability distribution to intelligently guide

where to fuzz inputs.
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intuition

Grammar based fuzzing: Knows the grammar of the model

Claimed as most effective fuzzing technique known today for fuzzing
applications

This work: Learn a generative language model over the set of PDF
object characters given a large corpus of objects
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PDF format

A PDF body is composed of three sections: objects, cross-reference
table, and trailer.
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Object

Object: first line: ID + generation number + obj

marked by “endobj”

Different type of data inside
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Cross reference table

Cross reference tables contain the address of referenced objects within
the document

2nd number indicates previous free object

n = object in use, f = not used
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Trailer

a dictionary of information about the body

startxref which is the address of the cross-reference table.
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Seq2seq generation model

Learn from objects
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Seq2seq generation model(Contd.)

Do revised sampling to guarantee it provide well formed object
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Experiment result

Do revised sampling to guarantee it provide well formed object
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Deep Reinforcement Fuzzing

ArXiv:1801.04589
Abstract: Fuzzing is the process of finding security vulnerabilities in input-processing code by

repeatedly testing the code with modified inputs. In this paper, we formalize fuzzing as a

reinforcement learning problem using the concept of Markov decision processes. This in turn

allows us to apply state-of-the-art deep Q-learning algorithms that optimize rewards, which we

define from runtime properties of the program under test. By observing the rewards caused by

mutating with a specific set of actions performed on an initial program input, the fuzzing agent

learns a policy that can next generate new higher-reward inputs. We have implemented this new

approach, and preliminary empirical evidence shows that reinforcement fuzzing can outperform

baseline random fuzzing.
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Fuzzing

Fuzzing is the process of finding security vulnerabilities in
input-processing code by repeatedly testing the code with modified,
or fuzzed, inputs.

Fuzzing heuristics: The algorithm to prioritize what (parts of) inputs
to fuzz next.
Can be pure random or optimizing for a specific goal, such as
maximizing code coverage.

Fuzzing ≈ Adversarial sample.
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State-of-the-art Fuzzing

Proposed as a cheap technique.

Cheap and easy to be automatic implemented → One of the most
popular technique in testing

State-of-the-art: coverage based.

SAGE from Microsoft: Based on SMT solver.
One sentence: Build symbolic SMT equations on the branches and try
to optimize the coverage by solving them.
AFL: Based on genetic programming.

Been used on many large projects and found expensive bugs.
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Setting

M: Fuzzer

a: Fuzzing action

P: Target program

I: Input

Can be viewed as a RL process
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Reinforcement Learning

RL process: State set x ∈ X , Action set a ∈ A, Transition P

Goal of the agent: Maximize the cumulative reward R =
∑∞

t=0 γ
trt+1

Policy π(·|x)
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Method

State: A string indicates program input

Action: Suppose to be I → (I × I ,F ,P). I: Sequence space. F:
σ-algebra of the sample space, measurement of I. P: Probability for
given rules

Reward: r(x , a) = E (x) + G (a)
In experiment E is defined as a combination of number of newly
discovered basic blocks, execution path length, and execution time of
the target.
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Process

Start with initial seed input x ∈ I , unconstrained.
Initialize Q function as a deep neural net
After that:
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Process - Details

State(x): get a sub-string x ′ at offset o and length l from state x .

Action(x’,Q): Sampling current Q function on state x0 to get an
action a ∈ A

Mutate(x,a): Applying action a on x

Reward(): r(x , a) = E (x) + G (a)

Update: Update the Q function based on Reward. Use memory replay
(xt , at , rt , xt+1)

Reset: Set the input to a valid input.
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Target: PDF

PDF: A complicated format, whose introduction has 1300 more pages

PDF document: a sequence of PDF bodies, each contains three
sections – objects, cross-reference table, and trailer

Test against pdftotext parser

Deep Reinforcement Fuzzing August 26, 2018 22 / 25



Implementation

Actions:

Random Bit Flips.
Insert Dictionary Tokens: Tokens from a dictionary, which selects from
other valid input files
Shift Offset and Width. Change offset and with.
Shuffle: We define two actions for shuffling substrings. The first action
shuffles bytes within the pointer, the second action shuffles three
segments of the PDF object that is located around offset o.
Copy Window. copy the x’ to a random place in x, considering both
overwrite and insert.
Delete Window. Remove x’
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Implementation

Reward: three different types: Code coverage, execution time and
combination of both.

Baseline: A fuzzer that random select actions in A.

Coverage: Use code coverage, measured using tools
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Experiment
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