Reinforcement Learning on Testing

Presented by : Ji Gao

¹Department of Computer Science, University of Virginia https://qdata.github.io/deep2Read/

August 26, 2018

August 26, 2018 1 / 25

2 Deep Reinforcement Fuzzing

1 Learn&Fuzz: Machine Learning for Input Fuzzing

2 Deep Reinforcement Fuzzing

Abstract: Fuzzing consists of repeatedly testing an application with modified, or fuzzed, inputs with the goal of finding security vulnerabilities in input-parsing code. In this paper, we show how to automate the generation of an input grammar suitable for input fuzzing using sample inputs and neural-network-based statistical machine-learning techniques. We present a detailed case study with a complex input format, namely PDF, and a large complex security-critical parser for this format, namely, the PDF parser embedded in Microsofts new Edge browser. We discuss (and measure) the tension between conflicting learning and fuzzing goals: learning wants to capture the structure of well-formed inputs, while fuzzing wants to break that structure in order to cover unexpected code paths and find bugs. We also present a new algorithm for this learn&fuzz challenge which uses a learnt input probability distribution to intelligently guide where to fuzz inputs.

- Grammar based fuzzing: Knows the grammar of the model
- Claimed as most effective fuzzing technique known today for fuzzing applications
- This work: Learn a generative language model over the set of PDF object characters given a large corpus of objects

	xrei	trailar
2 0 obj	0 6	traner
<<	0000000000 65535 f	<< /2: 10
/Type /Pages	0000000010 00000 n	/ 512e 18
/Kids [3 0 R]	0000000059 00000 n	/ 1110 170 K
/Count 1	0000000118 00000 n	
>>	0000000296 00000 n	>>
endobj	0000000377 00000 n	Startxrei 2661
	0000000395 00000 n	5001
(a)	(b)	(c)

Fig. 1. Excerpts of a well-formed PDF document. (a) is a sample object, (b) is a cross-reference table with one subsection, and (c) is a trailer.

• A PDF body is composed of three sections: objects, cross-reference table, and trailer.

125 0 obj 88 0 obj 75 0 obj [680.6 680.6] (Related Work) 4171 endobj endobj endobj (a) (b) (c)

```
47 l obj
[false 170 85.5 (Hello) /My#20Name]
endobj
(d)
```

Fig. 2. PDF data objects of different types.

- Object: first line: ID + generation number + obj
- marked by "endobj"
- Different type of data inside

3

Cross reference table

	xrei	trailar
2 0 obj	0 6	traner
<<	000000000 65535 f	/0: 10
/Type /Pages	000000010 00000 r	/5120 18
/Kids [3 0 R]	0000000059 00000 r	/ Into 170 R
/Count 1	0000000118 00000 r	
>>	0000000296 00000 r	1 stantwoof
endobj	0000000377 00000 r	
	0000000395 00000 r	3001
(a)	(b)	(c)

Fig. 1. Excerpts of a well-formed PDF document. (a) is a sample object, (b) is a cross-reference table with one subsection, and (c) is a trailer.

- Cross reference tables contain the address of referenced objects within the document
- 2nd number indicates previous free object
- n = object in use, f = not used

Trailer

	xrei	trailar
2 0 obj	0 6	traner
<<	000000000 65535 f	/ 9: 19
/Type /Pages	0000000010 00000 n	/ 512e 18
/Kids [3 0 R]	0000000059 00000 n	/1110 17 0 K
/Count 1	0000000118 00000 n	/ ROOL I U R
>>	$0000000296\ 00000$ n	>>
endobj	$0000000377\ 00000$ n	Startxrei
	0000000395 00000 n	3001
(a)	(b)	(c)

Fig. 1. Excerpts of a well-formed PDF document. (a) is a sample object, (b) is a cross-reference table with one subsection, and (c) is a trailer.

- a dictionary of information about the body
- startxref which is the address of the cross-reference table.

Seq2seq generation model

Fig. 3. A sequence-to-sequence RNN model to generate PDF objects.

• Learn from objects

Algorithm 1 SampleFuzz($\mathcal{D}(\mathbf{x}, \theta), t_{fuzz}, p_t$)

```
seq := "obj "
while ¬ seq.endswith("endobj") do
    c,p(c) := sample(\mathcal{D}(seq,\theta)) (* Sample c from the learnt distribution *)
    pfuzz := random(0, 1) (* random variable to decide whether to fuzz *)
    if pfuzz > tfuzz \land p(c) > p_t then
        c := argmin<sub>c'</sub> {p(c') ~ \mathcal{D}(seq,\theta)} (* replace c by c' (with lowest likelihood) *)
    end if
    seq := seq + c
    if len(seq) > MAXLEN then
        seq := "obj " (* Reset the sequence *)
    end if
    end while
    return seq
```

• Do revised sampling to guarantee it provide well formed object

Image: Image:

Experiment result

Fig. 6. Coverage for Sample and SampleSpace from 10 to 50 epochs, for host 1, 2, 3, and 123.

Learn&Fuzz: Machine Learning for Input Fuzzing

2 Deep Reinforcement Fuzzing

August 26, 2018 13 / 25

ArXiv:1801.04589

Abstract: Fuzzing is the process of finding security vulnerabilities in input-processing code by repeatedly testing the code with modified inputs. In this paper, we formalize fuzzing as a reinforcement learning problem using the concept of Markov decision processes. This in turn allows us to apply state-of-the-art deep Q-learning algorithms that optimize rewards, which we define from runtime properties of the program under test. By observing the rewards caused by mutating with a specific set of actions performed on an initial program input, the fuzzing agent learns a policy that can next generate new higher-reward inputs. We have implemented this new approach, and preliminary empirical evidence shows that reinforcement fuzzing can outperform baseline random fuzzing.

- Fuzzing is the process of finding security vulnerabilities in input-processing code by repeatedly testing the code with modified, or fuzzed, inputs.
- Fuzzing heuristics: The algorithm to prioritize what (parts of) inputs to fuzz next.

Can be pure random or optimizing for a specific goal, such as maximizing code coverage.

• Fuzzing \approx Adversarial sample.

- Proposed as a cheap technique.
- $\bullet\,$ Cheap and easy to be automatic implemented $\rightarrow\,$ One of the most popular technique in testing

- Proposed as a cheap technique.
- Cheap and easy to be automatic implemented \rightarrow One of the most popular technique in testing
- State-of-the-art: coverage based.
 - SAGE from Microsoft: Based on SMT solver. One sentence: Build symbolic SMT equations on the branches and try to optimize the coverage by solving them.
 - AFL: Based on genetic programming.

- Proposed as a cheap technique.
- Cheap and easy to be automatic implemented \rightarrow One of the most popular technique in testing
- State-of-the-art: coverage based.
 - SAGE from Microsoft: Based on SMT solver. One sentence: Build symbolic SMT equations on the branches and try to optimize the coverage by solving them.
 - AFL: Based on genetic programming.
- Been used on many large projects and found expensive bugs.

Fig. 1. Modeling Fuzzing as a Markov decision process.

- M: Fuzzer
- a: Fuzzing action
- P: Target program
- I: Input
- Can be viewed as a RL process

Reinforcement Learning

Fig. 1. Modeling Fuzzing as a Markov decision process.

- RL process: State set $x \in X$, Action set $a \in A$, Transition P
- Goal of the agent: Maximize the cumulative reward $R = \sum_{t=0}^{\infty} \gamma^t r_{t+1}$
- Policy $\pi(\cdot|x)$

- State: A string indicates program input
- Action: Suppose to be I → (I × I, F, P). I: Sequence space. F: σ-algebra of the sample space, measurement of I. P: Probability for given rules
- Reward: r(x, a) = E(x) + G(a)

In experiment E is defined as a combination of number of newly discovered basic blocks, execution path length, and execution time of the target.

Process

- Start with initial seed input $x \in I$, unconstrained.
- Initialize Q function as a deep neural net
- After that:

- State(x): get a sub-string x' at offset o and length I from state x.
- Action(x',Q): Sampling current Q function on state x_0 to get an action $a \in A$
- Mutate(x,a): Applying action a on x
- Reward(): r(x, a) = E(x) + G(a)
- Update: Update the Q function based on Reward. Use memory replay (x_t, a_t, r_t, x_{t+1})
- Reset: Set the input to a valid input.

- PDF: A complicated format, whose introduction has 1300 more pages
- PDF document: a sequence of PDF bodies, each contains three sections objects, cross-reference table, and trailer
- Test against pdftotext parser

Actions:

- Random Bit Flips.
- Insert Dictionary Tokens: Tokens from a dictionary, which selects from other valid input files
- Shift Offset and Width. Change offset and with.
- Shuffle: We define two actions for shuffling substrings. The first action shuffles bytes within the pointer, the second action shuffles three segments of the PDF object that is located around offset o.
- Copy Window. copy the x' to a random place in x, considering both overwrite and insert.
- Delete Window. Remove x'

- Reward: three different types: Code coverage, execution time and combination of both.
- Baseline: A fuzzer that random select actions in A.
- Coverage: Use code coverage, measured using tools

	Improvement	
Reward functions		
Code coverage r_1	7.75%	
Execution time r_2	7%	
Combined r_3	11.3%	
State width $w = x' $		
r_2 with $w = 32$ Bytes	7%	
r_2 with $w = 80$ Bytes	3.1%	
Generalization to new inputs		
r_2 for new input x	4.7%	
TABLE		

The improvements compared to the baseline (as defined inVI-C1) in the most recent 500 accumulated rewards after training the models for 1000 generations.

tanh	sigmoid	elu	softplus	softsign	relu
7.75%	6.56%	5.3%	2%	6.4%	1.3%

э.

(日) (周) (三) (三)