
Summary	Of	Several	
Autoencoder	models

Presentor:	Ji	Gao

Department	of	Computer	Science,	University	of	Virginia	
https://qdata.github.io/deep2Read/

List

• Adversarial	Autoencoders
• PixelGAN Autoencoders
• Generating	and	designing	DNA	with	deep	generative	models
• Feedback	GAN	(FBGAN)	for	DNA:	a	Novel	Feedback-Loop	Architecture	
for	Optimizing	Protein	Functions
• Autoregressive	Generative	Adversarial	Networks

Adversarial	autoencoders
Alireza Makhzani,	 Jonathon	Shlens,	Navdeep Jaitly,	 Ian	Goodfellow,	Brendan	Frey

• Use	adversarial	learning	in	training	autoencoders

Autoencoders

• Autoencoder

• Decoder	=	Generator:	Start	from	a	prior	(often	normal	distribution),	
produce	sample

Autoencoders

Why	Decoder	work?	
• Any	distribution	in	𝑑 dimension	can	be	generated	by	a	sufficiently	
complicated	function	on	𝑑 normally	distributional	variables.

Why	not	directly	optimize	decoder?

• If	directly	optimize	decoder	via	sampling,	it	will	take	exponentially	
number	of	samples(And	also	exponentially	parameters)
• A	lot	of	the	sampling	are	useless,	for	a	X,	we	only	need	the	part	of	z	
that	are	likely	to	produce	X
• Find	most	likely	z	to	produce	X	can	save	huge	amount	of	time	and	
make	the	process	tractable

Variational	Autoencoder

𝐷#$(𝑄(𝑧)||𝑃(𝑧|𝑥)) = 𝐸.~0[log𝑄 𝑧 − log𝑃(𝑧|𝑥)]

= 𝐸.~0[log𝑄 𝑧 − log𝑃 𝑥 𝑧 − log𝑃 𝑧 + log𝑃(𝑥)]

Latent	variable	𝑧~𝑃(𝑧) If	we	sample	𝑄(𝑧) to	approximate	𝑃(𝑥),	we	have

log𝑃(𝑥) − 𝐷#$(𝑄(𝑧)||𝑃(𝑧|𝑥)) = 𝐸.~0[log𝑃 𝑧|𝑥] − 𝐷#$(𝑄(𝑧)||𝑃(𝑧))

Bayesian

Reasonable	to	let	𝑄(𝑧) conditioned	on	x.

We	have:	
log𝑃(𝑥) ≥ 𝐸.~0[log𝑃 𝑧|𝑥] − 𝐷#$(𝑄(𝑧|𝑥)||𝑃(𝑧))

Variational	bound

Variational	Autoencoder
log𝑃(𝑥) ≥ 𝐸.~0[log𝑃 𝑧|𝑥] − 𝐷#$(𝑄(𝑧|𝑥)||𝑃(𝑧))
In	VAE,	we	let	𝑄 𝑧 𝑥 = 𝑁(𝑧|𝜇 𝑥;𝜃 , Σ(𝑥; 𝜃))

In	this	case:

Sample	x	and	z,	we	have		

Posterier

• Gaussian	Posterier

Variational	Autoencoder

From	Tutorial	on	Variational	Autoencoders https://arxiv.org/abs/1606.05908

Adversarial	autoencoder

• VAE	works	on

• 𝐷#$(𝑄 𝑧 𝑥 ||𝑃 𝑧) term	can	be	
optimized	in	adversarial	training
• Train	repeatedly	in	two	steps:
1.	Maximize	𝐸.~0[log𝑃 𝑥|𝑧]
2.	Minimize	the	distance	between	
𝑄(𝑧|𝑥) and	𝑃(𝑧)

log𝑃(𝑥) ≥ 𝐸.~0[log𝑃 𝑥|𝑧] − 𝐷#$(𝑄(𝑧|𝑥)||𝑃(𝑧))

Freedom	of	choosing	q()

• Compare	to	VAE,	in	this	form	it	can	be	optimized	using	several	
different	ways:
• 1.	Deterministic:	𝑞 𝑧 𝑥 is	a	deterministic	function	on	x
• 2.	Gaussian	posterior:	𝑄 𝑧 𝑥 = 𝑁 𝑧 𝜇 𝑥; 𝜃 , Σ 𝑥; 𝜃 similar	to	VAE.	
Can	use	the	same	reparameterization
• 3.	Universal	approximator posterior,	𝑞 𝑧 𝑥, 𝜂 = 𝛿(𝑧 − 𝑓(𝑥, 𝜂))

Adversarial	autoencoder	performance

Log	likelihood

Supervised	learning

• Fully	supervised	learning	to	
generate	samples	in	a	particular	
way

Semi-supervised	learning

• 2	adversarial	nets:	One	with	
categorical	data
• Train	in	three	phases:
• 1.	Reconstruction	phase
• 2.	Regularization	phase
• 3.	Semi-supervised	phase

PixelGAN Autoencoders
AlirezaMakhzani,	Brendan	Frey

PixelGAN Autoencoders

• Use	PixelCNN as	the	
generative	path
• PixelCNN conditioned	on	
q(z|x)

Categorical	prior

Experiment

Generating	and	designing	DNA	with	deep	
generative	models
Nathan	Killoran,	Leo	J.	Lee,	Andrew	Delong,	David	Duvenaud,	Brendan	J.	Frey

• 2017
• Three	approaches	to	generate	DNA	sequence:
• 1.	GAN
• 2.	Activation	maximization(Deep	Dream)
• 3.	A	joint	of	1	and	2

GAN	on	discrete	output

• DNA	sequence	is	discrete,	similar	to	NLP	task
• WGAN-GP	can	generate	the	sequence	in	the	direct	way:

Let	GAN	directly	output	one-hot	character	embeddings from	a	latent	vector	
without	any	discrete	sampling	step.	Softmax directly	passed	to	critic.

GAN	on	DNA

• Use	such	method	on	DNA:

Activation	Maximization

• The	method	is	actually	Deep	Dream:
• Start	from	sample	x,	make	it	target	at	a	certain	property	t(output)
• 𝑥 → 𝑥 + 𝜖∇E𝑡
• Works	on	continuous	case,	so	need	to	relax	discrete	symbols	into	
continuous	case

Joint	method

• Use	GAN	to	generate	sample
• Use	activation	maximization	to	optimize	a	sample	to	certain	
properties

Experiment:	Motif

• Sample	
sequences	tuned	
to	have	a	high	
predictor	score

Experiment

Feedback	GAN	(FBGAN)	for	DNA:	a	Novel	Feedback-Loop	
Architecture	for	Optimizing	Protein	Functions
Anvita Gupta,	James	Zou

• 2018
• Target:	Design	DNA	automatically	following	some	properties

Feedback	GAN

• (a)	WGAN-GP	as	generator
• (b)	Analyzer:	suppose	to	be	any	
function
• Rate	the	generated	samples
• Mark	the	top	sorted	samples	as	real	
samples

• (c)	Feedback	scheme
• Send	the	top	sorted	sample	back	to	
the	discriminator

Evaluation

• Before	training,	3.125%	of	
sequences	initially	 followed	the	
correct	gene	structure
• After	training,	77.08%	of	sampled	
sequences	contained	the	correct	
gene	structure

Autoregressive	Generative	Adversarial	Networks	
Yasin Yazici,	Kim-Hui	Yap,	Stefan	Winkler

• ICLR	18	Workshop

ARGAN

• Replace	discriminator	into	a	CNN	+	Autoregressive	model
• Motivation:	an	autoregressive	model	would	model	the	feature	
distribution	better	than	fully	connected	layers

S-ARGAN	and	C-ARGAN

Result

