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Generative	model

• Training	and	sampling	from	generative	model	shows	how	our	model	
can	represent	high-dimensional	probability	distribution
• Generative	model	can	be	used	on	reinforcement	learning
• Generative	model	can	perform	semi-supervised	learning
• Generative	model	can	enable	machine	learning	to	work	with	multi-
modal	output
• Many	tasks	intrinsically	requires	the	generation	of	good	samples



Maximum	Likelihood	Estimation

• Maximum	likelihood:
• Choose	the	parameters	to	maximize	the	likelihood	to	training	data
• Easier	to	do	in	the	log	space
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Generative	model	Tree	(NIPS	2016	Tutorial)



Autoregressive	models
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• Define	explicit	density	function
• Using	chain	rule



Variational	Autoencoder

• Maximize	variational lower	bound	𝐿 𝑥; 𝜃 ≤ log𝑝01234 𝑥; 𝜃
• Guarantee	to	achieve	a	high	value	as	the	log-likelihood	
• Issue:
• Bias:	If	not	properly	defined,	the	gap	might	be	an	issue
• Tend	to	get	good	likelihood,	but	bad	quality	on	image



Generative	Adversarial	Network(GAN)

• Generator:	Some	differentiable	function	G(z).	Z	is	sampled	from	some	
simple	prior	distribution,	G(z)	is	a	sample	of	x	drawn	from	𝑝01234.
• Structure	can	be	anything

• Discriminator:	Traditional	supervise	learning	model



Math:	Cost	Function	of	GAN

• Discrimintor:	𝐽 R 𝜃 R , 𝜃 W =
− 𝐸Y~[\]^] log𝐷 𝑥 − 𝐸_ log(1 − 𝐷(𝐺(𝑧)))
• Cross	entropy	loss. Label	1	for	the	samples	in	the	dataset,	0	for	generator	
samples.
• Discriminator	is	able	to	estimate	𝑝2EFE(𝑥)/𝑝01234(𝑥) everywhere
• It	doesn’t	have	any	bias.
• Generator:	𝐽 W 𝜃 R , 𝜃 W = −𝐽 R (𝜃 R , 𝜃 W ) if	it’s	a	zero-sum	game
• In	zero-sum	game	case	the	game	resembles	Jenson-Shannon	Bound.



Jenson-Shannon	Bound

• Suppose	D	is	optimal,	we	have	D 𝑥; 𝜃R∗ = 	 [\]^](Y)
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Math:	Cost	Function	of	GAN	II

• Discrimintor:	𝐽 R 𝜃 R , 𝜃 W =
− 𝐸Y~[\]^] log𝐷 𝑥 − 𝐸_ log(1 − 𝐷(𝐺(𝑧)))
• Generator:	𝐽 W 𝜃 R , 𝜃 W = −𝐽 R (𝜃 R , 𝜃 W ) if	it’s	a	zero-sum	game
• However,	zero-sum	game	doesn’t	perform	well	in	practice:
• Generator	maximize	the	cross	entropy
• If	discriminator	performs	well,	the	gradient	of	generator	vanishes

• Solution	from	Goodfellow 2014:	Change	the	sign
• 𝐽 W 𝜃 R , 𝜃 W = −𝐸_log	(𝐷(𝐺(𝑧)))
• No	longer	zero-sum,	and	heuristically	designed



Math:	Cost	Function	of	GAN	III

• If	let	𝐽 W 𝜃 R , 𝜃 W = −𝐸_𝜎Q- 𝐷 𝐺 𝑧 :

• 𝐽 W 𝜃 R , 𝜃 W = ∫𝑝01234 𝑥 𝑒xyz(R(W(k))) 𝑑𝑥
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• By	changing	loss	function	from	g,	GAN	can	work	on	different	loss



Choosing	loss	functions

• VAE	use	KL(MLE),	which	
tends	to	get	blurred	
image
• Reverse	KL	on	the	other	
side,	tend	to	converge	
to	modes
• GAN(original	version)	
optimize	JS,	somehow	
similar	to	reverse	KL
• However,	it	sometimes	
generate	samples	only	
from	few	modes



Choosing	loss	functions

• If	the	optimization	is	
easy,	minimax	give	
no	gradient
• The	change	is	rapid	
on	the	right	side,	
makes	small	number	
of	samples	
dominating



Architecture:	DCGAN

• Keys:
• Use	batch	normalization,	
with	the	two	
minibatches for	the	
discriminator	normalized	
separately
• All-convolutional	
net(Springenberg et	al.,	
2015),	no	pooling
• Adam	instead	of	SGD	



GAN	tricks

• https://github.com/soumith/ganhacks
• Train	with	labels	can	improve	the	performance	drastically
• “One-sided”	Label	smoothing:	Replace	the	target	for	the	real	
examples	with	a	value	slightly	less	than	1,	such	as	.9
• Batch	normalization
• Adam



Convergence	of	GAN(Or	Nonconvergence)

• For	two	player	game,	even	if	each	player	successfully	moves	downhill	
on	that	player’s	update,	the	same	update	might	move	the	other	
player	uphill.
• It	converge	on	some	game	but	not	all.
• Mode	collapse	could	be	one	result	of	such	nonconvergence (rather	
than	loss	function).	WGAN	claims	it	alleviate	the	mode	collapse	
problem,	though.



Non-Convergence	of	GAN:	Toy	Example

• Toy	example	of	game:
• 𝑉 𝑥, 𝑦 = 𝑥𝑦
• P1	Minimize	V(x,y)	by	controlling	y
• P2	Maximize	V(x,y)	by	controlling	x

• Equilibrium:	𝑥 = 𝑦 = 0

• Gradient:	Δ𝑥 = −𝛼 ��
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Convergence	proof

• If	g	is	on	all	
functions,	𝑝01234
converge	to	𝑝2EFE
• However,	it’s	not	
the	case	in	the	
deep	neural	
network



Evaluation	of	generative	models

• Hard	to	evaluate	because	doesn’t	give	probability	on	the	training	data
• Inception	score?
Other	scores:
• MODE	score
• AM	Score
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