Summary of Basics about Generative Adversarial Network

Presentor: Ji Gao

Department of Computer Science, University of Virginia <u>https://qdata.github.io/deep2Read/</u>

Generative model

- Training and sampling from generative model shows how our model can represent high-dimensional probability distribution
- Generative model can be used on reinforcement learning
- Generative model can perform semi-supervised learning
- Generative model can enable machine learning to work with multimodal output
- Many tasks intrinsically requires the generation of good samples

Maximum Likelihood Estimation

- Maximum likelihood:
 - Choose the parameters to maximize the likelihood to training data
 - Easier to do in the log space

$$\theta^* = \arg \max_{\theta} \prod_{i=1}^{m} p_{model}(x^{(i)}; \theta)$$

$$= \arg \max_{\theta} \sum_{i=1}^{m} \log p_{model}(x^{(i)}; \theta)$$

$$= \arg \max_{\theta} \int p_{data}(x) \log p_{model}(x; \theta) \, dx$$

$$= \arg \max_{\theta} \int p_{data}(x) \log p_{model}(x; \theta) - p_{data}(x) \log p_{data}(x) \, dx$$

$$= \arg \min_{\theta} \int p_{data}(x) \log \frac{p_{data}(x)}{p_{model}(x)} \, dx$$

$$= \arg \min_{\theta} D_{KL}(p_{data}||p_{model}(\theta)) \quad \text{KL divergence!}$$

Generative model Tree (NIPS 2016 Tutorial)

Autoregressive models

$$p_{model}(x;\theta) = \prod_{d=1}^{D} p(x_d | x_{1:d-1};\theta)$$

Deep Belief Network

NADE

MADE

PixelRNN

PixelCNN++

WaveNet

- Define explicit density function
- Using chain rule

Variational Autoencoder

- Maximize variational lower bound $L(x; \theta) \leq \log p_{model}(x; \theta)$
- Guarantee to achieve a high value as the log-likelihood
- Issue:
 - Bias: If not properly defined, the gap might be an issue
 - Tend to get good likelihood, but bad quality on image

Generative Adversarial Network(GAN)

- **Generator:** Some differentiable function G(z). Z is sampled from some simple prior distribution, G(z) is a sample of x drawn from p_{model} .
 - Structure can be anything
- Discriminator: Traditional supervise learning model

Math: Cost Function of GAN

- Discrimintor: $J^{(D)}(\theta^{(D)}, \theta^{(G)}) = -E_{x \sim p_{data}} \log D(x) E_Z \log(1 D(G(Z)))$
- Cross entropy loss. Label 1 for the samples in the dataset, 0 for generator samples.
- Discriminator is able to estimate $p_{data}(x)/p_{model}(x)$ everywhere
- It doesn't have any bias.
- Generator: $J^{(G)}(\theta^{(D)}, \theta^{(G)}) = -J^{(D)}(\theta^{(D)}, \theta^{(G)})$ if it's a zero-sum game
- In zero-sum game case the game resembles Jenson-Shannon Bound.

Jenson-Shannon Bound

• Suppose D is optimal, we have $D(x; \theta_D^*) = \frac{p_{data}(x)}{p_{data}(x) + p_{model}(x)}$ • In this case $J(\theta_D^*, \theta_G) = E_{x \sim p_d} \log D(x) + E_z \log (1 - D(G(z)))$ • = $\int p_{data}(x) \frac{p_{data}(x)}{p_{data}(x) + p_{model}(x)} dx + \int p_g(x) \frac{p_{data}(x)}{p_{data}(x) + p_{model}(x)} dx$ • = $KL\left(p_{data} || \frac{p_{data}(x) + p_{model}(x)}{2}\right) + KL\left(p_{model} || \frac{p_{data}(x) + p_{model}(x)}{2}\right) - 2\log 2$ • = 2Jenson-Shannon $(p_{data}||p_{model}) - 2\log 2$

Math: Cost Function of GAN II

- Discrimintor: $J^{(D)}(\theta^{(D)}, \theta^{(G)}) = -E_{x \sim p_{data}} \log D(x) E_Z \log(1 D(G(Z)))$
- Generator: $J^{(G)}(\theta^{(D)}, \theta^{(G)}) = -J^{(D)}(\theta^{(D)}, \theta^{(G)})$ if it's a zero-sum game
- However, zero-sum game doesn't perform well in practice:
 - Generator maximize the cross entropy
 - If discriminator performs well, the gradient of generator vanishes
- Solution from Goodfellow 2014: Change the sign

•
$$J^{(G)}(\theta^{(D)}, \theta^{(G)}) = -E_Z \log(D(G(Z)))$$

• No longer zero-sum, and heuristically designed

Math: Cost Function of GAN III

• If let
$$J^{(G)}(\theta^{(D)}, \theta^{(G)}) = -E_Z \sigma^{-1}(D(G(Z)))$$
:

• $J^{(G)}(\theta^{(D)}, \theta^{(G)}) = \int p_{model}(x) e^{\sigma^{-1}(D(G(Z)))} dx$

• We have
$$e^{\sigma^{-1}(x)} = \frac{x}{1-x}$$
, therefore $e^{\sigma^{-1}(D(x)^*)} = \frac{p_{data}(x)}{p_{model}(x)}$
• $J^{(G)}(\theta^{(D)}, \theta^{(G)}) = -\int p_{model}(x) \log \frac{p_{data}(x)}{p_{model}(x)} dx = D_{KL}(p_{model}||p_{data})$

• By changing loss function from g, GAN can work on different loss

Choosing loss functions

- VAE use KL(MLE), white tends to get blurred image
- Reverse KL on the oth side, tend to converge to modes
- GAN(original version) optimize JS, somehow similar to reverse KL
- However, it sometime generate samples only from few modes

Choosing loss functions

- If the optimization is easy, minimax give no gradient
- The change is rapid on the right side, makes small number of samples dominating

Architecture: DCGAN

- Keys:
 - Use batch normalization, with the two minibatches for the discriminator normalized separately
 - All-convolutional net(Springenberg et al., 2015), no pooling
 - Adam instead of SGD

GAN tricks

- https://github.com/soumith/ganhacks
- Train with labels can improve the performance drastically
- "One-sided" Label smoothing: Replace the target for the real examples with a value slightly less than 1, such as .9
- Batch normalization
- Adam

Convergence of GAN(Or Nonconvergence)

- For two player game, even if each player successfully moves downhill on that player's update, the same update might move the other player uphill.
- It converge on some game but not all.
- Mode collapse could be one result of such nonconvergence (rather than loss function). WGAN claims it alleviate the mode collapse problem, though.

Non-Convergence of GAN: Toy Example

- Toy example of game:
 - V(x, y) = xy
 - P1 Minimize V(x,y) by controlling y
 - P2 Maximize V(x,y) by controlling x
- Equilibrium: x = y = 0

• Gradient:
$$\Delta x = -\alpha \frac{\partial V}{\partial x} = -\alpha y$$

•
$$\frac{\partial y}{\partial t} = \alpha \frac{\partial V}{\partial y} = \alpha x$$

Convergence proof

- If g is on all functions, p_{model} converge to p_{data}
- However, it's not the case in the deep neural network

Proposition 2. If G and D have enough capacity, and at each step of Algorithm 1, the discriminator is allowed to reach its optimum given G, and p_q is updated so as to improve the criterion

$$\mathbb{E}_{\boldsymbol{x} \sim p_{data}}[\log D_G^*(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{x} \sim p_g}[\log(1 - D_G^*(\boldsymbol{x}))]$$

then p_g converges to p_{data}

Proof. Consider $V(G, D) = U(p_g, D)$ as a function of p_g as done in the above criterion. Note that $U(p_g, D)$ is convex in p_g . The subderivatives of a supremum of convex functions include the derivative of the function at the point where the maximum is attained. In other words, if $f(x) = \sup_{\alpha \in \mathcal{A}} f_{\alpha}(x)$ and $f_{\alpha}(x)$ is convex in x for every α , then $\partial f_{\beta}(x) \in \partial f$ if $\beta = \arg \sup_{\alpha \in \mathcal{A}} f_{\alpha}(x)$. This is equivalent to computing a gradient descent update for p_g at the optimal D given the corresponding G. $\sup_D U(p_g, D)$ is convex in p_g with a unique global optima as proven in Thm 1, therefore with sufficiently small updates of p_g, p_g converges to p_x , concluding the proof.

Evaluation of generative models

- Hard to evaluate because doesn't give probability on the training data
- Inception score?

Other scores:

- MODE score
- AM Score

Reference

- 1. Ian Goodfellow "NIPS 2016 tutorial: Generative adversarial networks." *arXiv preprint arXiv:1701.00160* (2016).
- 2. <u>https://github.com/soumith/ganhacks</u>