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Generative model

* Training and sampling from generative model shows how our model
can represent high-dimensional probability distribution

* Generative model can be used on reinforcement learning
* Generative model can perform semi-supervised learning

* Generative model can enable machine learning to work with multi-
modal output

* Many tasks intrinsically requires the generation of good samples



Maximum Likelihood Estimation

* Maximum likelihood:
* Choose the parameters to maximize the likelihood to training data

e Easierto dointhe log space .
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Generative model Tree (NIPS 2016 Tutorial)
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Autoregressive models
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Variational Autoencoder

* Maximize variational lower bound L(x;0) < logp,,,,q0;(x; 0)
* Guarantee to achieve a high value as the log-likelihood

* [ssue:

* Bias: If not properlydefined, the gap might be an issue
* Tend to get good likelihood, but bad quality on image



Generative Adversarial Network(GAN)

* Generator: Some differentiable function G(z). Z is sampled from some
simple prior distribution, G(z) is a sample of x drawn from p,,,,der-

e Structure can be anything

* Discriminator: Traditional supervise learning model



Math: Cost Function of GAN

» Discrimintor: /(?) (9(0),9(®)) =
—Exp,,., 108D (x) — Ezlog(1 — D(G(2)))

* Cross entropy loss. Label 1 for the samples in the dataset, O for generator
samples.

* Discriminator is able to estimate P44 (X)/Pmode; (X) €verywhere
* It doesn’t have any bias.
» Generator: /(9 (9() (&) = —jD) (D) (&)} ifit’s a zero-sum game

* In zero-sum game case the game resembles Jenson-Shannon Bound.



Jenson-Shannon Bound
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* Suppose D is optimal, we have D(x; 8;) =




Math: Cost Function of GAN ||

» Discrimintor: (D) (D) 9(6)) =
—Exp,,.,108D(x) — Ez log(1 — D(G(2)))
» Generator: /(9 (9() (&) = —jD) (D) (&)} ifit’s a zero-sum game

* However, zero-sum game doesn’t perform well in practice:
* Generator maximize the cross entropy
* |f discriminator performs well, the gradient of generator vanishes

 Solution from Goodfellow 2014: Change the sign
+ J@(0),6(9) = —E,log(D(G(2)))
* No longer zero-sum, and heuristically designed



Math: Cost Function of GAN Il

Iflet J@(6P,0©@) = —E,071 (D(6(2))):
@D §@) = [p, . (x)e? " PE@N) gy

° We have eO'_l(X) — L’ therefore ea_l(D(x)*) — pdata(x)

1—x Pmodel(X)

+JO(8P),0©)) = — [ Poger (x) log L2 dx =

Pmodel(X)
DKL (pmodel | |pdata)

* By changing loss function from g, GAN can work on different loss



Choosing loss functions

e VAE use KL(MLE), whit
tends to get blurred
image

e Reverse KL on the oth
side, tend to converge
to modes

 GAN(original version)
optimize JS, somehow
similar to reverse KL

* However, it sometime
generate samples only
from few modes

q* = argmin, Dy (pl|q)
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Choosing loss functions

* If the optimization is i
easy, minimax give N~ | | |

no gradient

* The change is rapid
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Architecture: DCGAN

* Keys:
e Use batch normalization,
with the two

256

512
6 : Stride 2 .

: 1
\\
,f’_ 51—
-

minibatches for the 1024
discriminator normalized 1002-J =
separately Code Project and

reshape

* All-convolutional
net(Springenberget al.,
2015), no pooling

e Adam instead of SGD

Deconv 1
Deconv 2

:EF i
1 =R
Stride 2

Deconv 3

3
128
N
N
N ‘ L
N 5 [~
-] F
32, | Stride 2
64
Deconv 4

Image



GAN tricks

e https://github.com/soumith/ganhacks

* Train with labels can improve the performance drastically

* “One-sided” Label smoothing: Replace the target for the real
examples with a value slightly less than 1, such as .9

e Batch normalization
e Adam



Convergence of GAN(Or Nonconvergence)

* For two player game, even if each player successfully moves downhill
on that player’s update, the same update might move the other
player uphill.

* It converge on some game but not all.

* Mode collapse could be one result of such nonconvergence (rather
than loss function). WGAN claims it alleviate the mode collapse
problem, though.



Non-Convergence of GAN: Toy Example

* Toy example of game:

e V(x,y) = xy 2
* P1 Minimize V(x,y) by controllingy .
* P2 Maximize V(x,y) by controllingx |

* Equilibrium: x =y =0 o

. oV L.
* Gradient: Ax = —a——=—ay , . . | | .
. ay B aV B Iterations

ada—=ax
dt ay



Convergence proof

*Ifgisonall
functions, D0 4er
convergeto Pgatq

* However, it’s not
the case in the
deep neural
network

Proposition 2. If G and D have enough capacity, and at each step of Algorithm 1, the discriminator
is allowed to reach its optimum given G, and p, is updated so as to improve the criterion

]Em’\’p(lam [log Dg(w)] + ]Em’\’pg []‘Og(]‘ - Dé(w))]

then p, converges 10 Paaa

Proof. Consider V(G,D) = U(py, D) as a function of p, as done in the above criterion. Note
that U(py, D) is convex in p,. The subderivatives of a supremum of convex functions include the
derivative of the function at the point where the maximum is attained. In other words, if f(z) =
sup,ea fa(z) and f,(x) is convex in z for every a, then 0fz(z) € Of if B = argsupyec g fa(T).
This is equivalent to computing a gradient descent update for p, at the optimal D given the cor-
responding G. supp U(pg, D) is convex in p, with a unique global optima as proven in Thm 1,
therefore with sufficiently small updates of p,, p, converges to p,, concluding the proof. [



Evaluation of generative models

* Hard to evaluate because doesn’t give probability on the training data
* Inception score?

Other scores:

* MODE score

* AM Score
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