
Summary	of	A	Few	Recent	
Papers	about	

Discrete	Generative	models
Presenter:	Ji	Gao

Department	of	Computer	Science,	University	of	Virginia	
https://qdata.github.io/deep2Read/

Outline

• SeqGAN
• BGAN:	Boundary	Seeking	Generative	Adversarial	Networks
• MaskGAN
• BEGAN

SeqGAN:	Sequence	Generative	Adversarial	
Nets	with	Policy	Gradient
• Lantao Yu, Weinan Zhang, Jun	Wang, Yong	Yu
• Shanghai	Jiaotong University

SeqGAN:	Policy	gradient	+	MC	search

SeqGAN:	Notations

• Generator	𝐺" ,	Discriminator	𝐷$
• Goal:	Generate	token	sequence	𝑌&:(= 𝑦&. . 𝑦(, 𝑦- ∈ 𝒴
• In	time	step	t,	state	s is	preceding	tokens	𝑦&. . 𝑦-0&,	and	action	a	is	the	
next	token	𝑦-
• Policy:	𝐺"(𝑦-|𝑌&:-0&) is	a	stochastic	policy	over	all	possible	tokens
• GAN	loss:	𝐿 𝜃,𝜙 = −𝐸9~;<=>= log𝐷 𝑌 − 𝐸9~;B[log(1 − 𝐷(𝑌))]
• For	the	generator	in	training,	loss	is	𝐿F 𝜃 = −𝐸9~;B[log𝐷(𝑌)]

Problem:	No	way	to	train	the	generator

• What	we	want:	𝛻" log𝐷(𝑌) =
&

H(9)
IH(9)
I9

𝛻"𝑌

• However,	for	discrete	Y,	there’s	no	𝛻"𝑌
• Unable	to	train	the	generator	directly

In	the	RL	view

Suppose	𝑄QR 𝑠, 𝑎 is	the	value	function,	that	is,	the	expected	
accumulative	reward	start	from	state	s	taking	policy	𝐺".

𝐽 𝜃 = 𝐸 𝑅(𝑠f, 𝜃 = g 𝐺" 𝑦& 𝑠f 	 ⋅ 𝑄Hi
QR (𝑠f, 𝑦&)

jk∈𝓎

We	have:
𝑄Hi
QR 𝑌&:(0&, 𝑦(= 𝐷$(𝑌&:()

The	whole	process	only	get	reward	at	the	end	of	the	process.𝑄QR 𝑠, 𝑎

Monte	Carlo	Tree	Search

Use	N-time	Monte	Carlo	Tree	Search:
𝑌&:(& , … , 𝑌&:(o = 𝑀𝐶QR(𝑌&:-	; 𝑁)

We	have:

𝑄Hi
QR 𝑌&:-0&, 𝑦- =

1
𝑁g

𝐷$ 𝑌&:(t , 𝑌&:(t ∈ 𝑀𝐶Qu(𝑌&:-; 𝑁)
o

tv&

	for	𝑡 < 𝑇	

𝐷$ 𝑌&:- 	for	𝑡 = 𝑇

Policy	Gradient

• G	– Generator(probability)
• Q	– Value	function
• V	– State	Value

Algorithm

Detail

• Generator:	RNN
• Dsicriminator:	CharCNN
• Result:

Boundary	Seeking	Generative	Adversarial	Network
R	Devon	Hjelm,	Athul Paul	 Jacob,	Yoshua Bengio

• Use	f-GAN	formula
• Introduce	importance	sampling	for	discrete	case

f-divergence	family

• f-divergence	family:

• f:	𝑅z → 𝑅,	f(1)=0

Variational	analysis	on	f-divergence

• Conjugate	function	(Convex)
𝑓∗ 𝑡 = sup

~∈����
{𝑢𝑡 − 𝑓(𝑡)}

• 𝐷�(𝑃| 𝑄 = ∫ 𝑞 𝑥 sup
-∈����∗

𝑡 ; �
� �

− 𝑓∗ 𝑡 𝑑𝑥�

• ≥ sup
(∈(

(∫ 𝑝(𝑥) 𝑇 𝑥 𝑑𝑥	 − ∫ 𝑞 𝑥 𝑓∗(𝑇 𝑥)𝑑𝑥)
• = sup

(∈(
(𝐸� 𝑇 𝑥 − 𝐸�[𝑓∗(𝑇(𝑥))])

• Which	is	a	lower	bound	of	the	distribution	difference
• The	bound	is	tight	if	T	can	be	any	function
• Optimal	𝑇∗ 𝑥 = 𝑓′(;(�)

� �
) if	f,p,q has	value	on	any	x

GAN	setting

• 𝑇:	Discriminator

Importance	weight	estimator

• In	practice(not	optimal	case),	the	estimation	may	be	biased

• Let	𝑤∗ 𝑥 = I�∗ �
I(𝑇∗ 𝑥 (if	tight,	it	equals	;(�)�(�))

• Let	𝛽 = 𝐸�[𝑤(𝑥)]

• 	�̂� 𝑥 = � �
� 𝑞(𝑥) is	an	estimator	of	p(x)

• May	be	biased,	but	the	bias	only	depends	on	the	tightness	of	Variational	lower	bound

Discrete..

• In	discrete	case,	we	don’t	have	𝛻�𝐷(𝑥)
• But	now	we	can	use	this	importance	sampling:

• This	gradient	equation	allow	us	to	train
• Estimating	𝛽 has	a	high	variance

Decrease	variance

Algorithm

REINFORCE

• Can	revise	previous	policy	gradient	equation	using	REINFORCE	
algorithm:

MaskGAN:	Better	Text	Generation	via	Filling	in	
the______
William	Fedus,	Ian	Goodfellow,	 Andrew	M.	Dai

• Task:	Fill	in	the	missing	token
• Use	Seq2seq	generator
• Use	Actor-critic

Motivation

• MLE	method:	Good	perplexity,	bad	quality
• Tend	to	generate	same	word
• GAN	->	More	flexible,	but	not	working	directly
• Use	filling	the	blank	task	to	show	this	works	better	than	traditional	
method

Actor-Critic

GAN

• Reward:	log	of	discriminator	output
• Training:	REINFORCE

• Critic	𝑏-

Result

BEGAN:	Boundary	Equilibrium	Generative	
Adversarial	Networks
David	Berthelot,	Thomas	Schumm,	Luke	Metz,	Google	2017

• Use	autoencoder	as	discriminator
• Use	a	new	loss	function	(on	a	new	target)
• Use	a	new	GAN	objective	function:	Boundary	Equilibrium	

Network

• Generator	=	Encoder
• Discriminator	=	Encoder	+	Decoder

Target:	Sample Autoencoder	Loss	

• Minimize	the	Wasserstein	distance	between	the	autoencoder	loss	
distribution	instead	of	sample	distribution:

Training	of	GAN

• m1:	loss	of	real	data
• Discriminator	goal:

Total	objective:	Use	control	theory	to	
maintain	equilibrium

• 𝛾 is	defined	as

Plug	&	Play	Generative	Networks:	Conditional	Iterative	Generation	of	Images	in	
latent	space

Summary:	Propose	a	type	of	generators:	PPGN,	which	use	GAN	and	a	
classifier	together	to	generate	better	samples

Previous	work:	DGN-AM
Optimize	to	find	which	h	can	highly	activates	
a	neuron	in	classifier	C	(i.e.,	activation	
maximization)

Such	G	can	be	transfered	to	other	C,	to	
produce	other	valid	results

Issue:	The	images	are	too	similar	due	to	the	
activation	maximization

Idea:	Build	a	probabilistic	 framework	for	activation	maximization

Sampling	from	a	joint	model	(x:input,	
y:target	label)	can	be	split	into	two	parts

Suppose	we	want	to	generate	sample	for	
class	yc
p(x):	Generate	good	image

p(y=yc|x):	Classified	to	be	a	certain	class

Metropolis	Hastings
For	a	distribution	p(x),	if	we	want	to	estimate	it	without	an	IID	sampler,	we	
need	MCMC	methods	for	sampling

Metropolis	Hastings	algorithm	(When	q(x’|x)	is	a	simple	Gaussian	
N(0,sigma^2)):

In	theory,	it	will	produce	samples	for	any	computable	p(x)

MALA(Metropolis-adjusted	Langevin	Algorithm)
Problem	of	MH:

1. Converge	slow
2. We	need	p(x)	to	calculate	alpha	(Sometimes	hard)

MALA	is	a	revised	algorithm:

MALA-Approx
Stochastic	gradient	Langevin	dynamics	can	relax	the	requirement	of	exact	
p(x):

Simply	use	a	stochastic	gradient	descent	plus	noise	in	the	process:

The	real	equation	used	in	these	algorithm:

Back	to	the	problem:

Another	decoupling:

Connection	to	previous	activation	maximization

Activation	Maximization	with	no	prior:	(e1,e2,e3)	=	(0,1,0)

Gaussian	prior:	Use	(e1,e2,e3)	=	(lambda,	1,	0)

Hand	driven	prior:	Add	a	new	regularization	term	in	the	equation

Previous	alogirthm	doesn’t	have	the	noise	term,	therefore,	easy	to	generate	
similar	image

Denoising	autoencoder
Use	a	denoising	autoencoder	to	provide	the	prior

Denoising	autoencoder:	Add	some	noise	in	the	hidden	representation,	try	to	
do	the	reconstruction

Model	I
DAE	+	Classifier

Use	DAE	to	model	x	and	produce	x

Sampling	from	the	whole	model

Problem:	Performance	is	bad

DGN-AM
Use	GAN	to	model	x

Optimize	to	find	which	h	can	highly	
activates	a	neuron	in	classifier	C	(i.e.,	
activation	maximization)

DGN-AM
● 4	CNNs:	
● 1)	a	fixed	encoder	network	E	to	be	

inverted
● 2)	a	generator	network	G
● 3)	a	fixed	“comparator”	network	C
● 4)	a	discriminator	D
● G	is	trained	to	invert	a	feature	

representation	extracted	by	the	network	
E.	Satisfy	3	objectives:	

● 1.	For	a	feature	vector	yi =	E(xi),	the	
synthesized	image	G(yi)	has	to	be	close	to	
the	original	image	xi	2.	The	features	of	the	
output	image	C(G(yi))	have	to	be	close	to	
those	of	the	real	image	C(xi)

● 3.	D	should	be	unable	to	distinguish	G(yi)	
from	real	images.	

PPGN-h
Use	GAN	+	DAE

DAE:	Produce	better	prior	for	sampling

Joint	PPGN-h

Use	multiple	DAEs,	for	a	better	
reconstruction	of	the	prior

Noiseless	Joint	PPGN-h

Doesn’t	use	noise,	get	better	
performance	in	practice...

Image	captions
Can	be	used	generate	image	by	
image	captions

Experiment	result

