Summary of Three Recent Papers: Deep Reinforcement Learning and Adversarial Attacks

Presentor: Ji Gao

Department of Computer Science, University of Virginia <u>https://qdata.github.io/deep2Read/</u>

Paper List

- Adversarial Attacks on Neural Network Policies
- Vulnerability of Deep Reinforcement Learning to Policy Induction Attacks
- Online Robust Policy Learning in the Presence of Unknown Adversaries
- Robust Deep Reinforcement Learning with Adversarial Attacks

Adversarial Attacks on Neural Network Policies

Sandy Huangy, Nicolas Papernotz, Ian Goodfellowx, Yan Duanyx, Pieter Abbeely

- 2017 ICLR Workshop
- Idea: Craft adversarial samples in the input feature (State) of RL algorithm, lead to a large degrade of test-time performance
- Test-time

Idea

action taken: **down** adversarial input

action taken: \mathbf{up} original input

RL algorithm

- DQN: Deep Q Network
- TRPO: Trust Region Policy Optimization. Use a whole trajectory rollout on stochastic policy, penalized by the KL divergence between old and new policy.
- A3C: Asynchronous Advantage Actor-Critic. Asynchronous gradient descent on stochastic policy.

Apply FGSM on Policy

- FGSM directly use $J(\theta, x, y)$ to generate perturbation.
- In this case, just assume the policy π_{θ} generated is good, and our good is to flip the predicted policy.
- Note: Use an extra softmax on the DQN

Different norms

$$\eta = \begin{cases} \epsilon \operatorname{sign}(\nabla_x J(\theta, x, y)) & \text{for constraint } \|\eta\|_{\infty} \leq \epsilon \\ \epsilon \sqrt{d} * \frac{\nabla_x J(\theta, x, y)}{\|\nabla_x J(\theta, x, y)\|_2} & \text{for constraint } \|\eta\|_2 \leq \|\epsilon \mathbf{1}_d\|_2 \\ \text{maximally perturb highest-impact dimensions with budget } \epsilon d \\ & \text{for constraint } \|\eta\|_1 \leq \|\epsilon \mathbf{1}_d\|_1 \end{cases}$$

Result

Figure 2: Comparison of the effectiveness of ℓ_{∞} , ℓ_2 , and ℓ_1 FGSM adversaries on four Atari games trained with three learning algorithms. The average return is taken across ten trajectories. Constraint on EGSM perturbation:

Transferability

Figure 3: Transferability of adversarial inputs for policies trained with A3C. Type of transfer:

Vulnerability of Deep Reinforcement Learning to Policy Induction Attacks

Vahid Behzadan and Arslan Munir

International Conference on Machine Learning and Data Mining in Pattern Recognition 2017

• Attack DQN

Threat model

- Priori info: Structure of DQN, reward function R
- Attacker: Work on state, not actions
- Magnitude of perturbation is smaller than ϵ

Method

- Use another DQN to simulate DQN
- Use FGSM and JSMA

Procedure

Algorithm 1: Exploitation Procedure

input : adversarial policy π^*_{adv} , initialized replica DQNs Q', $\hat{Q'}$, synchronization frequency c, number of iterations N

```
1 for observation = 1, N do
```

```
Observe current state s_t, action a_t, reward r_t, and resulting state s_{t+1}
 \mathbf{2}
          if s_{t+1} is not terminal then
 3
               set a'_{adv} = \pi^*_{adv}(s_{t+1})
 4
                Calculate perturbation vector \hat{\delta}_{t+1} = Craft(\hat{Q'}, a'_{adv}, s_{t+1})
 5
               Update s_{t+1} \leftarrow s_{t+1} + \hat{\delta}_{t+1}
 6
               Set y_t = (r_t + max_{a'}\hat{Q'}(s_{t+1} + \hat{\delta}_{t+1}, a'; \theta'_-)
 7
               Perform SGD on (y_t - Q'(s_t, a_t, \theta'))^2 w.r.t \theta'
 8
          end
 9
          Reveal s_{t+1} to target
10
          if observation mod c = 0 then \theta'_{-} \leftarrow \theta'
11
12 end
```

Experiment result

Fig. 4: Success rate of crafting adversarial examples for DQN

Transferability

Online Robust Policy Learning in the Presence of Unknown Adversaries

Aaron J. Havens, Zhanhong Jiang, Soumik Sarkar

- Setting: Finite-horizon discounted MDP
- Base Algorithm: TRPO
- Goal: Online mitigation of the adversarial perturbation

Motivation

- In the learning, if the input changed, the expected reward will be different to the actual reward.
- In the online setting, an advantage(expect result observed return) can be used as a good indicator that whether the input has been perturbed

Method(General idea)

- Create multiple(2) policies
- A master policy can choose one policy from time to time.
- When it detects a change on the input, it will choose a different policy

Method

- Start with random policies
- For a step, estimate the advantage of both policies

$$\mathbf{A}_{t} = \left[A_{GAE,t-h} | \pi_{nom}, A_{GAE,t-h} | \pi_{adv}\right] \in \mathbb{R}^{2}$$
$$a_{master,t} = \pi_{*,t} = \operatorname*{argmax}_{a} \mathbb{E}_{s_{t},\pi_{i},m_{i}...} \left[\sum_{t=0}^{T} \gamma^{t} r(s_{t},a) | m_{i}\right] \in \{\pi_{nom}, \pi_{adv}\}$$

- Optimize master policy according to the loss
- Optimize both policies

Method

Algorithm 1: MLAH

Input : π_{nom} and π_{adv} sub-policies parameterized by θ_{nom} and θ_{adv} ; Master policy π_{master} with
parameter vector ϕ .
1 Initialize $\theta_{nom}, \theta_{adv}, \phi$
2 for pre-training iterations [optional] do
3 Train π_{nom} and θ_{nom} on only nominal experiences.
4 end
5 for <i>learning life-time</i> do
6 for Time steps t to $t + T$ do
7 Compute \mathbf{A}_t over sub-policies (see eq. 4)
s select sub-policy to take action with π_{master} using \mathbf{A}_t as observations
9 end
10 Estimate all A_{GAE} for π_{nom} , π_{adv} over T
11 Estimate all A_{GAE} for π_{master} over T with respect to \mathbf{A}_t observations
12 Optimize θ_{nom} based on experiences collected from π_{nom}
13 Optimize θ_{adv} based on experiences collected from π_{adv}
14 Optimize ϕ based on all experiences with respect to \mathbf{A}_t observations
15 end

Result

Robust Deep Reinforcement Learning with Adversarial Attacks

Pattanaik, Anay, Zhenyi Tang, Shuijing Liu, Gautham Bommannan, and Girish Chowdhary. In *Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems*

- Even naïve attack can degrade DRL algorithms
- Adversarial Training leads to significant increase in robustness to parameter variations for RL benchmarks
- Target RL algorithm:
 - DDQN
 - DDPG

Perturbation

- Naïve attack: Random perturbation
- Gradient attack: Gradient based perturbation(FGSM)

Adversarial attack

- Use beta distribution to sample noise from some distribution
- Sample multiple times and pick the largest one

Algorithm 2 Naive attack (DDPG)

1: **procedure** NAIVE($Q^{target}, U, s, \epsilon, n, \alpha, \beta$) ▷ Naive attack function takes trained target critic network Q^{target} , trained actor network U, current state(s), adversarial attack magnitude constraint(ϵ), parameters of beta distribution(α, β) and number of times to sample noise(n) as input $a^* = U(s), Q^* = Q^{target}(s, a^*)$ ▷ Determine optimal action and action value function 2: 3: for i = 1 : n do \triangleright Sample a few times $n_i \sim beta(\alpha, \beta) - 0.5$ 4: \triangleright Sample noise ▷ Possible adversarial state determined by sampled noise $s_i = s + \epsilon * n_i$ 5: > Determine optimal action in potential adversarial state 6: $a_{adv} = U(s_i)$ $Q_{adv}^{target} = Q^{target}(s, a_{adv})$ 7: ▷ Determine the value of potential adversarial action corresponding to potential adversarial state for current state if $Q_{adv}^{target} < Q^*$ then \triangleright if the potential adversarial state leads to bad action 8: $Q^* = Q_{adv}^{target}$ ▷ Store the value function of that potential bad action 9: 10: $s_{adv} = s_i$ ▷ Store possible adversarial state 11: else 12: do nothing end if 13: 14: end for 15: \triangleright Adversarial state return s_{adv} 16: end procedure

Adversarial training

Algorithm 5 Training with adversarial perturbation (DDQN)

- 1: **procedure** ADV TRAIN (Q^{target}, Q) \triangleright Gradient based adversarial training method takes pre-trained network
- 2: for i = 1: *iterations* do \triangleright Train adversarially for number of timesteps
- 3: Reset the environment and receive observation
- 4: while not terminal or not max time steps per episode reached do
- 5: $s_{adv} = Grad(Q^{target}, Q, s, \epsilon, n, \alpha, \beta)$ 6: $a = arg \max Q(s_{adv,a})$ Fooled agent takes action according to behavior policy

7: $s, r = Env(a, s) \triangleright$ Environment returns next state and reward corresponding to state s and action a

- 8: Update the weights of network according to DDQN algorithm
- 9: end while
- 10: **end for**
- 11: end procedure

Adversarial Attack performance

Robust

• Test the adversarial trained agent on a wide range of parameters and compared it to "vanilla" DRL