Summary on DeepXplore: Automated White-box Testing of Deep Learning Systems

Presented by : Ji Gao

¹Department of Computer Science, University of Virginia https://qdata.github.io/deep2Read/

August 26, 2018

Presented by : Ji Gao (University of VirginiaSummary on DeepXplore: Automated White-

DeepXplore: Automated White-box Testing of Deep Learning Systems

Abstract: . . . We design, implement, and evaluate DeepXplore, the first white-box framework for systematically testing real-world DL systems. We address two main problems: (1) generating inputs that trigger different parts of a DL systems logic and (2) identifying incorrect behaviors of DL systems without manual effort. First, we introduce neuron coverage for systematically estimating the parts of DL system exercised by a set of test inputs. Next, we leverage multiple DL systems with similar functionality as cross-referencing oracles and thus avoid manual checking for erroneous behaviors. We demonstrate how finding inputs triggering differential behaviors while achieving high neuron coverage for DL algorithms can be represented as a joint optimization problem and solved efficiently using gradient-based optimization techniques . . .

- It is important to ensure Deep Learning system works well. Need proper testing methods
- Problem on testing machine learning models:
 - 1. Input space is huge: clearly we can't test everything
 - 2. Lack of the oracle.
 - 3. The code is generated by machine
 - 4. It's a data-driven approach

This paper: use software testing skills to help.

- Input space is huge \rightarrow define a new coverage metric
- Oracle problem \rightarrow Pseudo oracle N-version programming: Use multiple version of machine learning models

Coverage DeepXplore: Automated White-box Testing of Deep Learning Systems

and a neural network. The nodes in gray denote the corresponding basic blocks or neurons that participated while processing an input.

Code coverage: a popular measure in software testing However can't be directly used in Machine learning models. Every line of the code is always executed for any inputs. Neuron coverage: how many neurons are activated (i.e., output value goes over a threshold) by the test inputs.

$$NCov(T,X) = \frac{|\{n | \forall x \in T, out(n,x) > t\}|}{|N|}$$

According to their pseudo-code, should be

$$NCov(T) = rac{|\{n| \exists x \in T, out(n, x) > t\}|}{|N|}$$

Theory: each neuron in a DNN tends to be responsible for extracting a specific feature of the input instead of multiple neurons collaborating to extract a feature. [Understanding Neural Networks Through Deep Visualization] (Questionable)

Figure 4: DeepXplore workflow.

< A

- Maximizing neuron coverage: Generate test case that can activate more neurons.
- Oracle: Test multiple target DNN together and find those test cases that is supported by all DNNs except one. (Actually, in the experiment there's always 3 target models, so it's always 2-1)

Doing two things together.

Algorithm 1 Test input generation via joint optimization

Input: seed_set ← unlabeled inputs as the seeds
dnns ← multiple DNNs under test
$\lambda_1 \leftarrow$ parameter to balance output differences of DNNs (Equa-
tion 2)
$\lambda_2 \leftarrow$ parameter to balance coverage and differential behavior
$s \leftarrow$ step size in gradient ascent
t ← threshold for determining if a neuron is activated
$\mathbf{p} \leftarrow$ desired neuron coverage
cov_tracker ← tracks which neurons have been activated
1: /* main procedure */
2: gen_test := empty set
3: for cycle($x \in \text{seed_set}$) do // infinitely cycling through seed_set
4: /* all dnns should classify the seed input to the same class */
5: $c = dnns[0].predict(x)$
6: d = randomly select one dnn from dnns
7: while True do 8: obj1 = COMPUTE_OBJ1(x, d, c, dnns, λ_1)
9: obj2 = COMPUTE_OBJ2(x, dnns, cov_tracker)
10: $obj = obj1 + \lambda_2 \cdot obj2$
11: $\operatorname{grad} = \partial \operatorname{obj} / \partial x$
12: /*apply domain-specific constraints to gradient*/
13: grad = DOMAIN_CONSTRNTS(grad)

14:	$x = x + s \cdot grad$ //gradient ascent
15:	if d.predict(x) \neq (dnns-d).predict(x) then
16:	/* dnns predict x differently */
17:	gen test.add(x)
18:	Update cov_tracker
19:	break
20:	if DESIRED_COVERAGE_ACHVD(cov_tracker) then
21:	return gen_test
22:	/* utility functions for computing obj1 and obj2 */
23:	procedure COMPUTE_OBJ1(x, d, c, dnns, λ_1)
24:	rest = dnns - d
25:	loss1 := 0
26:	for dnn in rest do
27:	$loss1 += dnn_c(x)$ //confidence score of x being in class c
28:	
29:	return (loss1 - λ_1 ·loss2)
30:	procedure COMPUTE_OBJ2(x, dnns, cov_tracker)
31:	loss := 0
32:	for $dnn \in dnns$ do
33:	select a neuron n inactivated so far using cov_tracker
34:	loss += n(x) //the neuron n's output when x is the dnn's input
35:	return loss
	15: 16: 17: 18: 19: 20: 21: 22: 23: 24: 25: 26: 27: 28: 29: 30: 31: 32: 33: 34:

This algorithm does an optimization in two objectives together.

Objective 1: Find a test case that maximize the difference for one model and the other models. Formula:

$$obj_1(x) = \sum_{i \neq j} F_i(x)[c] - \lambda_1 * F_j(x)[c]$$

For example, Suppose three classifiers have the following result on input x:

	Model A	Model B	Model C
Car	0.7	0.8	0.9
Truck	0.2	0.1	0.1
Bike	0.1	0.1	0

The algorithm pick Model C as the target, that is, try to generate a test case x' based on x that make Model C generate a different answer. Suppose $\lambda_1 = 2$ Then the output of object 1 is $0.7 + 0.8 - 0.9 \times 2 = -0.3$ Objective 2: To find a test case that increase the neuron coverage:

$$obj_2 = out(n_i)$$
 that $out(n_i) > t$

 n_i is a randomly picked neuron. According to the algorithm, it's randomly found every time, each at a time. So it could be different neuron at steps of optimization.

Each time of the optimization select one neuron on every DNN and add them together.

Example:

In the case, the red neuron is not activated (threshold =0.1) Therefore $\mathsf{obj}_2=0.1$

- 1. Pick a test sample x (unlabeled). In the case, the classification result is 0 (car).
- 2. Randomly pick a model $d \in DNNs$. In the case, it's Model A.
- 3. Loop
- 3.1 Calculate $obj_1 = -0.3$
- 3.2 Calculate $obj_2 = 0.1$
- 3.3 $obj_{total} = Obj_1 + \lambda_2 obj_2$
- 3.4 Get the gradient grad = $\frac{\partial obj_{total}}{\partial x}$
- 3.5 grad = DOMAIN_CONSTRAINTS(grad)
- 3.6 Let $x = x + \alpha * grad$
- 3.7 If d classifies differently (and other models still classifies the same), add x into the test set. Otherwise back to 3.1
- 4. If current set of test samples is good enough (on neuron coverage), stops. Otherwise go to 1.

In order to make the test cases generated meaningful:

- 1. Only make the image darker or brighter.
- 2. Change a rectangle part of the graph into random noise.
- 3. Only apply the negative perturbation on a small rectangle set of the model

- Goal: 1. Show neuron coverage is a good metric
- Code coverage doesn't works
- Traditional inputs have small neuron coverage.
- Different class inputs activate different neurons
- 2. Show DeepXplore is a good method.
- Neuron coverage is good
- Execution time is acceptible
- 3. DeepXplore testing cases can be used to improve the model.

 Table 4: Comparison of code coverage and neuron coverage for 10

 randomly selected inputs from the original test set of each DNN.

Dataset	Code Coverage			Neuron Coverage		
Dataset	Cl	C2	<i>C3</i>	C1	C2	<i>C3</i>
MNIST	100%	100%	100%	32.7%	33.1%	25.7%
ImageNet	100%	100%	100%	1.5%	1.1%	0.3%
Driving	100%	100%	100%	2.5%	3.1%	3.9%
Contagio	100%	100%	100%	19.8%	17.3%	17.3%
Drebin	100%	100%	100%	16.8%	10%	28.6%

 Table 5: Average number of overlaps among activated neurons for a pair of inputs of the same class and different classes. Inputs of different classes tend to activate different neurons.

	Total neurons	Avg. no. of activated neurons	Avg. overlap
Diff. class	268	83.6	45.9
Same class	268	84.1	74.2

- Code coverage is always 100%, while neuron coverage varies.
- For the same class, the number of activated neurons are much more similar

Experiment result - DeepXplore

Figure 8: The neuron coverage achieved by the same number of inputs (1% of the original test set) produced by DeepXplore, adversarial testing [18], and random selection from the original test set. The plots show the change in neuron coverage for all three methods as the threshold t (defined in Section 5) increases. DeepXplore, average, covers 34.4% and 33.2% more neurons than random testing and adversarial testing.

- DeepXplore achieves higher neuron coverage than baseline method
- However:
 - 1. Baseline method is not suitable for the task
 - 2. Only have neuron coverage result
- Result show DeepXplore achieves 100% neuron coverage in a short period of time, however they doesn't mention the threshold number here.

< D > < A > < B >

Experiment result - Usage of test input

Figure 9: Improvement in accuracy of three LeNet DNNs when the training set is augmented with the same number of inputs generated by random selection ("random"), adversarial testing ("adversarial") [18], and DeepXplore.

- Use generate test suite to train.
 Problem: Result not very convincing.
- Detecting training data pollution attack: Highly doubtful