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The challenge of verification and testing of machine
learning

Testing: Evaluating the system in several conditions and observing
its behavior, watching for defects.

Verification: Producing a compelling argument that the system will
not misbehave under a very broad range of circumstances.

The challenge of verification and testing of machine learning August 26, 2018 5 / 86



The challenge of verification and testing of machine
learning

Machine learning practitioners have traditionally relied primarily on
testing: Accuracy.

No guarantee for upper bound.
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Bring to adversarial samples
The challenge of verification and testing of machine learning

Adversarial samples: Slightly perturbed samples that lead to an error

Become a problem

Testing can’t solve this problem

Even testing on adversarial samples can’t reveal the robustness of the
model

Need stronger guarantee

The challenge of verification and testing of machine learning August 26, 2018 7 / 86



Theoretical verification of ML
The challenge of verification and testing of machine learning

Several recent works:

An abstraction-refinement approach to verification of artificial neural
networks. Pulina, L., & Tacchella, A. (2010, July)
Safety Verification of Deep Neural Networks. Huang, X., Kwiatkowska,
M., Wang, S., & Wu, M. (2016).
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks.
Katz, G., Barrett, C., Dill, D., Julian, K., & Kochenderfer, M. (2017).
Computer Aided Verification 17

Doesn’t seem very practical to me:
Use SAT solver.
Only works on very small networks.
Need to have specific activation function and limit to certain
structure.
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Men Also Like Shopping: Reducing Gender Bias
Amplification using Corpus-level Constraints

Abstract: Language is increasingly being used to define rich visual recognition problems with
supporting image collections sourced from the web. Structured prediction models are used in
these tasks to take advantage of correlations between co-occurring labels and visual input but
risk inadvertently encoding social biases found in web corpora. In this work, we study data and
models associated with multilabel object classification and visual semantic role labeling. We find
that (a) datasets for these tasks contain significant gender bias and (b) models trained on these
datasets further amplify existing bias. For example, the activity cooking is over 33% more likely
to involve females than males in a training set, and a trained model further amplifies the
disparity to 68% at test time. We propose to inject corpus-level constraints for calibrating
existing structured prediction models and design an algorithm based on Lagrangian relaxation
for collective inference. Our method results in almost no performance loss for the underlying
recognition task but decreases the magnitude of bias amplification by 47.5% and 40.5% for
multilabel classification and visual semantic role labeling, respectively.
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Intro
Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level
Constraints

Visual recognition tasks: Mining relationships in the image

However, bias in the data makes learner learns stereotypes.

Cooking in dataset: 33% man and 66% woman

Cooking in a unlabeled data by Learned annotator: 16% man and
84% woman

Stereotypes got amplified
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Identifying stereotypes
Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level
Constraints

Bias score:

b(verb,man) =
c(verb,man)

c(verb,man) + c(verb,woman)

Bias Amplification:

1

|O|
∑
o

(b̂(o, g)− b∗(o, g))

b̂ is the bias of learned annotator, and b∗ is the bias of original data.
o is the output, and g is gender.
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Debiasing the model
Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level
Constraints

We can force the bias in a certain range, but it’s hard.

Form this as an optimization problem.

Can be optimized together with the original optimization process.
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Debiasing the model
Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level
Constraints

Find arg maxy∈Y fθ(y , i),fθ(y , i) is a scoring function, in this case is
log p(y |i , θ)

Constraints b∗ − γ ≤
∑

i y
i
v=v∗,r∈M∑

i y
i
v=v∗,r∈M+

∑
i y

i
v=v∗,r∈W

≤ b∗ + γ, i is the index

of test sample

Use combinatorial optimization tools to solve.
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Experiment
Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level
Constraints
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Experiment result
Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level
Constraints
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Discussion
Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level
Constraints

Original method works properly, but still amplifies the stereotypes

Possible to build a test set to exploit such bias?
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Abstract
Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word
Embeddings

Abstract: The blind application of machine learning runs the risk of amplifying biases present
in data. Such a danger is facing us with word embedding, a popular framework to represent text
data as vectors which has been used in many machine learning and natural language processing
tasks. We show that even word embeddings trained on Google News articles exhibit female/male
gender stereotypes to a disturbing extent. This raises concerns because their widespread use, as
we describe, often tends to amplify these biases. Geometrically, gender bias is first shown to be
captured by a direction in the word embedding. Second, gender neutral words are shown to be
linearly separable from gender definition words in the word embedding. Using these properties,
we provide a methodology for modifying an embedding to remove gender stereotypes, such as
the association between between the words receptionist and female, while maintaining desired
associations such as between the words queen and female. We define metrics to quantify both
direct and indirect gender biases in embeddings, and develop algorithms to ”debias” the
embedding. Using crowd-worker evaluation as well as standard benchmarks, we empirically
demonstrate that our algorithms significantly reduce gender bias in embeddings while preserving
the its useful properties such as the ability to cluster related concepts and to solve analogy
tasks. The resulting embeddings can be used in applications without amplifying gender bias.
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Introduction
Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word
Embeddings

Word Embedding trained include sexism result:
−−→man−−−−−→woman ≈ −−−−−−−−−−−−−−−→computer programmer−

−−−−−−−→
homemaker

As widely used, word embedding can even amplify the gender
stereotypes.

Example: For a search algorithm use word embedding, if male names
have a closer distance to the word ”programmer” than female names,
it would likely to return a male name first.
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Goal of this paper
Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word
Embeddings

Major goals:

Identify gender stereotypes.

Debaising.
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Related work
Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word
Embeddings

Gender bias in language has been studied over decades in various
fields.

Several work on “fair” binary classification, including multiple ways to
modify the prediction algorithm.

Previous work dealing with gender bias by completely remove gender
from the dataset.
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Identify gender stereotypes in word embedding
Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word
Embeddings

Step 1: Find out pair of words that are similar to the pair (she, he).
Similar metric: Cosine similarity

S(a,b)(x , y) = cos(−→a −
−→
b ,−→x −−→y ) if ||−→x −−→y || ≤ δ
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Identify gender stereotypes in word embedding
Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word
Embeddings

Step 2: Use crowdsourcing to identify whether pair of words are
stereotypes or not.
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Identify gender direction
Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word
Embeddings

Is there a universal gender vector exists?

Aggregate different pair of words that reflect gender, i.e., he-she,
mother-father, woman-man.

Use PCA to capture the major direction.
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Direct bias
Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word
Embeddings

If a word should be gender-neutral, then the bias can be measured by

DirectBiasc =
1

|N|
∑
ω∈N
| cos(−→ω , g)|c

g is the unit gender vector, and c as a hyperparameter.
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Indirect bias
Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word
Embeddings

What if two words which should have gender relationship to each
other? The bias can be measured by projecting the embedding vector
onto the gender space. Suppose w = wg + w⊥

β(w , v) = (w · v − w⊥ · v⊥
||w⊥||2||v⊥||2

)/w · v

Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings August 26, 2018 27 / 86



Debiasing
Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word
Embeddings

Step 1: Identify the gender subspace

Step 2: Define two methods: Hard de-biasing and Soft de-biasing.

Hard debiasing: Neutralize all words to the gender space. Equalize
the distance of pair of words outside the space.

Soft debiasing: Tradeoff the previous method with similarity to the
original embedding
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Debiasing(Contd.)
Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word
Embeddings

Hard Debiasing:
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Debiasing Result
Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word
Embeddings

Effectiveness: Is stereotypes successfully removed after the debiasing?
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Debiasing Result
Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word
Embeddings

Accuarcy: Will debiasing affect the performance of the word embedding?

According to the result, the answer is no.

Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings August 26, 2018 31 / 86



Outline

1 The challenge of verification and testing of machine learning

2 Men Also Like Shopping: Reducing Gender Bias Amplification using
Corpus-level Constraints

3 Man is to Computer Programmer as Woman is to Homemaker?
Debiasing Word Embeddings

4 Understanding Black-box Predictions via Influence Functions

5 An Empirical Study of Bugs in Machine Learning Systems

6 What’s your ML Test Score? A rubric for ML production systems

7 DeepXplore: Automated White-box Testing of Deep Learning Systems

8 A Family of Test Adequacy Criteria for Database-Driven Applications

9 On testing non-testable programs

Understanding Black-box Predictions via Influence Functions August 26, 2018 32 / 86



Understanding Black-box Predictions via Influence
Functions

Abstract: How can we explain the predictions of a blackbox model? In this paper, we use
influence functions a classic technique from robust statistics to trace a models prediction
through the learning algorithm and back to its training data, thereby identifying training points
most responsible for a given prediction. To scale up influence functions to modern machine
learning settings, we develop a simple, efficient implementation that requires only oracle access
to gradients and Hessian-vector products. We show that even on non-convex and
non-differentiable models where the theory breaks down, approximations to influence functions
can still provide valuable information. On linear models and convolutional neural networks, we
demonstrate that influence functions are useful for multiple purposes: understanding model
behavior, debugging models, detecting dataset errors, and even creating visually
indistinguishable training-set attacks.
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Goal of this papers
Understanding Black-box Predictions via Influence Functions

How can we explain the predictions on machine learning models?

Intuition: Understand what the consequence will be if change training
samples

Idea: Borrow the Influence functions idea from robust statistics
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Background
Understanding Black-box Predictions via Influence Functions

Machine learning: Learn from X → Y

Suppose L(z , θ) is the loss function, θ stands for parameters, z stands
for training point (x , y)

total loss 1
n

∑n
i=1 L(zi , θ), zi ..zn are samples

θ̂ = arg minθ
1
n

∑n
i=1 L(zi , θ)

Goal: Figure out the change of θ and L(θ) if a single point z changed
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Influence Function
Understanding Black-box Predictions via Influence Functions

influence function: if one sample is upweighted, how would the
prediction result change?

That is θ̂′ = arg minθ
1
n

∑n
i=1 L(zi , θ) + εL(z , θ)

The result from paper (Cook and Weisberg, 1982) is:

Iup,params(z) := d θ̂
dε |ε=0 = −H−1

θ̂
∇θL(z , θ̂) , Here Hθ̂ is the Hessian

matrix: Hθ̂ = 1
n

∑n
i=1∇2

θL(zi , θ̂).
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Using influence Function to estimate the effect of
removing a sample
Understanding Black-box Predictions via Influence Functions

If θ̂′ = arg minθ
1
n

∑n
i=1 L(zi , θ) + εL(z , θ), we have

d θ̂
dε |ε=0 = −H−1

θ̂
∇θL(z , θ̂)

Removing a sample is equivalent to ε = − 1
n

When n is large, 1
n ≈ 0

Therefore, θ̂′ − θ̂ ≈ − 1
n
d θ̂
dε |ε=0 = 1

nH
−1

θ̂
∇θL(z , θ̂)

Similarly, for any test sample ztest , the change of L(ztest , θ) can be
approximated by:

L(ztest , θ)′ − L(ztest , θ) ≈ −1

n

dL(ztest , θ)

dε
|ε=0

= −1

n
∇θL(ztest , θ)

d θ̂

dε
|ε=0

=
1

n
∇θL(ztest , θ)H−1

θ̂
∇θL(z , θ̂)
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Influence Function contd.
Understanding Black-box Predictions via Influence Functions

For perturbation on a data point z → zδ, here xδ = x + δ

Can be viewed as adding a new training point while deleting the old
point.

θ̂ = arg minθ
1
n

∑n
i=1 L(zi , θ) + εL(zδ, θ)− εL(z , θ)

We have

Ipert,params(z) =Iup,params(zδ)− Iup,params(z)

=− H−1

θ̂
∇θ(L(zδ, θ̂)− L(z , θ̂))

(1)

Assume it’s continuous, then the preturbation can be approximated as
θ̂zδ,−z − θ̂ ≈ −H

−1

θ̂
[∇x∇θL(zδ, θ̂)]δ
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An logistic regression example
Understanding Black-box Predictions via Influence Functions

Let p(y |x) = σ(yθT x). For a training point z = (x , y),
L(z , θ) = log(1 + exp(−yθT x))

What’s the influence on a test point?
Iup,loss(z , ztest) = −ytesty · σ(−ytestθT xtest) · (−yθT x) · xTtestH−1

θ̂
x

−yθT x stands for error

H−1

θ̂
decides the impact, the size of the impact on the gradient

direction.

x · xtest represents the distance
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Efficiently calculation of influence
Understanding Black-box Predictions via Influence Functions

Calculation the hessian matrix takes O(np2 + p3) time, and we also
want to calculate it over all training points, which takes extra n times.

Idea: Use Hessian-vector products(HVP) to approximate the hessian.
That is, instead of H−1

θ̂
, calculate the product H−1

θ̂
∇θL(z , θ̂) directly.

Transform the matrix inversion to an optimization problem, and use
conjugate gradient to solve it.

In addition, do a stochastic estimation on the Hessian matrix.
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Validation
Understanding Black-box Predictions via Influence Functions

Compare the result of influence function and retraining, matches.
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Non-convex case

Previous result assume we can achieve the optimized solution. For
Neural Network, it’s not convex, so the method doesn’t work?

Use a convex approximation:
L̃(z , θ) = L(z , θ̃) +∇L(z , θ̃)T (θ − θ̃) + 1

2 (θ − θ̃)T (Hθ̃ + λI )(θ − θ̃)
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Non-differentialable loss
Understanding Black-box Predictions via Influence Functions

How to handle Non-differentialable loss?

Idea: generate a smooth approximation.

For example, Hingeloss Hinge(s) = max(0, 1− s)

appriximated with SmoothHinge(s) = tlog(1 + exp( 1−s
t ))

Result:
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Case study 1: Understanding which sample is important to
current prediction

If a train sample have a larger influence (positive −Iup,loss), it’s more
helpful to the prediction.

Result show in the graph.
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Case study 2: Poisoning sample

For a typical test sample, modify the training sample following the
rule of z ′i :=

∏
(z ′i + αsign(Ipert,loss(z ′i , ztest))

A slight modification on the training samples can change the
prediction result!
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Case study 3: Debugging domain mismatch

Domain mismatch: Difference between the training set and testing
set.

Experiment: Predict diabetic patients to be readmitted using logistic
regression with 127 features.
Originally, 3 out of 24 children under age 10 in training set is
readmitted. Manually remove 20 data from the set, so currently it’s 3
out of 4. A bias is created between training and test set, and many
children data in the test set is wrongly predicted in the test set.

Without influence function: Check the learned θ on the feature
children, not very abnormal: 14 features have a larger coefficient.

Use influence function: All 4 children samples left have a very strong
influence on those wrongly predicted samples, 30-40 times larger than
others. Therefore there exists a domain mismatch.
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Case study 4: Fixing mislabeled examples

Idea: mislabeled example have a negative effect on the prediction.

Experiment: Manually random flip 10% data.

Baseline1: Check data points randomly

Baseline2: Check those data points with highest loss.

Method: Check those data points that would have a positive effect if
removed using influence function.
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Related Work

Influence Function: In different statistics papers (Cook, 1977; Cook &
Weisberg, 1980; 1982)

Several previous papers in ML use influence functions to study model
robustness and do fast cross-validation in kernel methods (Christmann
& Steinwart (2004); Debruyne et al. (2008); Liu et al. (2014))

Training set attack is equivalent to previous training set attack
(Biggio et al. (2012)), and several poisoning attack papers (Mei &
Zhu, 2015; Li et al., 2016).

(Cadamuro et al. (2016)) consider the task of taking an incorrect test
prediction and finding a small subset of training data such that
changing the labels on this subset makes the prediction correct.
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An Empirical Study of Bugs in Machine Learning Systems

Abstract: Many machine learning systems that include various data mining, information
retrieval, and natural language processing code and libraries are used in real world applications.
Search engines, internet advertising systems, product recommendation systems are sample users
of these algorithm-intensive code and libraries. Machine learning code and toolkits have also
been used in many recent studies on software mining and analytics that aim to automate various
software engineering tasks. With the increasing number of important applications of machine
learning systems, the reliability of such systems is also becoming increasingly important. A
necessary step for ensuring reliability of such systems is to understand the features and
characteristics of bugs occurred in the systems. A number of studies have investigated bugs and
fixes in various software systems, but none focuses on machine learning systems. Machine
learning systems are unique due to their algorithm-intensive nature and applications to
potentially large-scale data, and thus deserve a special consideration. In this study, we fill the
research gap by performing an empirical study on the bugs in machine learning systems. We
analyze three systems, Apache Mahout, Lucene, and OpenNLP, which are data mining,
information retrieval, and natural language processing tools respectively. We look into their bug
databases and code repositories, analyze a sample set of bugs and corresponding fixes, and label
the bugs into various categories. Our study finds that 22.6% of the bugs belong to the
algorithm/method category, 15.6% of the bugs belong to the non-functional category, and 13%
of the bugs belong to the assignment/initialization category. We also report the relationship
between bug categories and bug severities, the time and effort needed to fix the bugs, and bug
impacts. We highlight several bug categories that deserve attention in future research.
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Goal of this paper
An Empirical Study of Bugs in Machine Learning Systems

Intuition: Bugs are prevalent in software systems. None of the
previous work focus on Machine Learning systems

Goal

1. understand the nature of the bugs in machine learning systems

2. help to deal with bugs
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Design
An Empirical Study of Bugs in Machine Learning Systems

Analyze 3 machine learning systems/libraries.

Apache Mahout: A data mining library

Apache Lucene: A information retrieval library.

Apache OpenNLP: A NLP toolkit

Contributions:

first to analyze on machine learning systems

manually categorize 500 bug reports

investigate the relationship between bug categories and bug severities,
bug fixing time and effort, and bug impact.
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Method - Bug categorization
An Empirical Study of Bugs in Machine Learning Systems

Categories: From paper Defect categorization: making use of a decade of
widely varying historical data Categories
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Experiment - Research Questions
An Empirical Study of Bugs in Machine Learning Systems

RQ1: How often bugs appear? RQ2: What kind of bug appear? RQ3:
How severe are various kinds of bugs? RQ4: How long does it take to fix
those bugs? RQ5: How much effort is needed to fix the bug? RQ6: How
many files need to be fixed for various bugs?
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RQ1: Bug frequency

Lucene have higher bug desity than Mahout and OpenNLP.

An Empirical Study of Bugs in Machine Learning Systems August 26, 2018 55 / 86



RQ2: Bug Types

Algorithm > non-functional > assignment
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RQ3: Bug severities
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RQ4: Bug-fixing duration

An Empirical Study of Bugs in Machine Learning Systems August 26, 2018 58 / 86



RQ5: Bug-fixing effort
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RQ6: Impact on files
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What’s your ML Test Score? A rubric for ML production
systems

Abstract: Using machine learning in real-world production systems is
complicated by a host of issues not found in small toy examples or even
large offline research experiments. Testing and monitoring are key
considerations for assessing the production-readiness of an ML system.
But how much testing and monitoring is enough? We present an ML Test
Score rubric based on a set of actionable tests to help quantify these issues.
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Introduction
What’s your ML Test Score? A rubric for ML production systems

- Real world machine learning systems might get problem not found in
small toy examples or even large offline experiments.
- This paper list a set of actionable tests, and design a scoring system to
measure how ready for production a given machine learning system is.
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Scoring

For each test, one point is awarded for executing the test manually and
documenting and distributing the results. A second point is awarded if
there is a system in place to run that test automatically on a repeated
basis. The final ML Test Score is computed by taking the minimum of the
scores aggregated for every test.

0 points: More of a research project than a productionized system.

1-2 points: Not totally untested, but it is worth considering the
possibility of serious holes in reliability.

3-4 points: Theres been first pass at basic productionization, but
additional investment may be needed.

5-6 points: Reasonably tested, but its possible that more of those
tests and procedures may be automated.

7-10 points: Strong levels of automated testing and monitoring,
appropriate for missioncritical systems.

12+ points: Exceptional levels of automated testing and monitoring.
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Related Work

Chris Murphy, Gail E Kaiser, and Marta Arias. An approach to software
testing of machine learning applications. In SEKE, page 167. Citeseer,
2007.
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Tests for features and data

Machine learning systems differ from traditional software-based systems in
that the behavior of ML systems is not specified directly in code but is
learned from data.

Distribution: Test that the distributions of each feature match
your expectations

Correlation: Test the relationship between each feature and the
target, and the pairwise correlations between individual signals.

Calculation cost: Test the cost of each feature.

Validity: Test that a model does not contain any features that have
been manually determined as unsuitable for use.

Privacy: Test that your system maintains privacy controls across its
entire data pipeline.

Develop time: Test the calendar time needed to develop and add a
new feature to the production model.

Code: Test all code that creates input features, both in training and
serving.
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Tests for Model Development

It can be all too tempting to rely on a single-number summary metric to
judge performance, perhaps masking subtle areas of unreliability.

Code: Test that every model specification undergoes a code review
and is checked in to a repository.

Metric: Test the relationship between offline proxy metrics and the
actual impact metrics.

Hyperparameters: Test the impact of each tunable hyperparameter.

Staleness: Test the effect of model staleness.

Test against a simpler model as a baseline.

Test model quality on important data slices.

Test the model for implicit bias.
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Tests for ML Infrastructure

Test the reproducibility of training. Use the same data to train twice.

Unit test model specification code.

Integration test the full ML pipeline.

Test model quality before attempting to serve it.

Test that a single example or training batch can be sent to the model,
and changes to internal state can be observed from training through
to prediction.

Test models via a canary process before they enter production serving
environments.

Test how quickly and safely a model can be rolled back to a previous
serving version.
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Monitoring Tests for ML

Test for upstream instability in features, both in training and serving

Test that data invariants hold in training and serving inputs.

Test that your training and serving features compute the same values.

Test for model staleness.

Test for NaNs or infinities appearing in your model during training or
serving.

Test for dramatic or slow-leak regressions in training speed, serving
latency, throughput, or RAM usage.

Test for regressions in prediction quality on served data.
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DeepXplore: Automated White-box Testing of Deep
Learning Systems

Abstract: . . . We design, implement, and evaluate DeepXplore, the first white-box

framework for systematically testing real-world DL systems. We address two main problems: (1)

generating inputs that trigger different parts of a DL systems logic and (2) identifying incorrect

behaviors of DL systems without manual effort. First, we introduce neuron coverage for

systematically estimating the parts of DL system exercised by a set of test inputs. Next, we

leverage multiple DL systems with similar functionality as cross-referencing oracles and thus

avoid manual checking for erroneous behaviors. We demonstrate how finding inputs triggering

differential behaviors while achieving high neuron coverage for DL algorithms can be represented

as a joint optimization problem and solved efficiently using gradient-based optimization

techniques . . .
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Goal of this paper
DeepXplore: Automated White-box Testing of Deep Learning Systems

It is important to ensure Deep Learning system works well.

Problem: Traditional testing methods of Deep Learning have
problems: Expensive labeling and Low neuron coverage coverage

Automatic test case generation with high neuron coverage
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Goal of this paper
DeepXplore: Automated White-box Testing of Deep Learning Systems

DeepXplore: Automated White-box Testing of Deep Learning Systems August 26, 2018 73 / 86



Summary
DeepXplore: Automated White-box Testing of Deep Learning Systems

Maximizing neuron coverage: For each step, select an inactivate
neuron, and try to increase it’s value.

Labeling: Use differential testing. Train multiple target DNN together
and find those test cases that is supported by all DNNs except one.
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Experiment Design
DeepXplore: Automated White-box Testing of Deep Learning Systems

Metrics:

Neuron coverage

Execution time

Retraining accuracy

Not very appealing as the major experiment result is on neuron coverage:
Some metric defined by this paper.
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Next step on this paper

Use test case generated to improve the neural network:
(In the paper) retraining

Select out nodes that are not effective, remove/change them.

The two things optimized together doesn’t seems very compatible. It
is possible that only optimize one thing will achieve better result.
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A Family of Test Adequacy Criteria for Database-Driven
Applications

Abstract: Although a software application always executes within a
particular environment, current testing methods have largely ignored these
environmental factors. Many applications execute in an environment that
contains a database. In this paper, we propose a family of test adequacy
criteria that can be used to assess the quality of test suites for
database-driven applications. Our test adequacy criteria use dataflow
information that is associated with the entities in a relational database.
Furthermore, we develop a unique representation of a database-driven
application that facilitates the enumeration of database interaction
associations. These associations can reflect an applications definition and
use of database entities at multiple levels of granularity. The usage of a
tool to calculate intraprocedural database interaction as- sociations for two
case study applications indicates that our adequacy criteria can be
computed with an acceptable time and space overhead.
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Goal
A Family of Test Adequacy Criteria for Database-Driven Applications

Many software applications include databases.

Current testing method ignore specific environment

Goal of this paper is to design test accuracy criteria on
database-driven approaches.
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Requirement
A Family of Test Adequacy Criteria for Database-Driven Applications

Test cases should reveal faults of database applications.

Specifically, this paper use database integrity to represent the faults:
Validity:
(1-v) it inserts a record into a database that does not reflect the real
world
(2-v) it fails to insert a record into the database when the status of
the real world changes.
Completeness:
(1-c) it deletes a record from a database when this record still reflects
the real world
(2-c) the status of the real world changes and it fails to include this
information as a record inside of a database.
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Method
A Family of Test Adequacy Criteria for Database-Driven Applications

Traditional def-use test doesn’t consider interaction with database.

For the database case, should be doing an enumeration:

Also an algorithm to generate the new CFG graph including database
interactions.
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Discussion
A Family of Test Adequacy Criteria for Database-Driven Applications

Future directions:

Use this method as a guideline of automatic input generation.

Perform static checking on such applications.
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On testing non-testable programs

Abstract: A frequently invoked assumption in program testing is that
there is an oracle (i.e. the tester or an external mechanism can accurately
decide whether or not the outpugt produced by a program is correct). A
program is non-testable if either an oracle does not exist or the tester must
expend some extraordinary amount of time to determine whether or not
the output is correct. The reasonableness of the oracle assumption is
examined and the conclusion is reached that in many cases this is not a
realistic assumption. The consequences of assuming the availability of an
oracle are examined and alternatives investigated.
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Oracle problem
On testing non-testable programs

Non-testable programs:
1. There’s no oracle.
2. The oracle is practically too difficult to find.

Is it able to test without the oracle?
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Testing without an oracle
On testing non-testable programs

Produce a pseudo-oracle - dual coding

Reduce the test set.

Accept the plausible result
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