Open Domain Question Answering Using Early Fusion of Knowledge Bases and Text

By: Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn Mazaitis, Ruslan Salakhutdinov, and William W. Cohen

Presented by: Jennifer Fang [Week 03]

Department of Computer Science: University of Virginia

@ https://qdata.github.io/deep2Read/
Open Domain Question Answering Using Early Fusion of Knowledge Bases and Text

Goal: Develop a new model, called GRAFT-Net (Graphs of Relations Among Facts and Text Networks), for extracting answers from a question-specific subgraph containing text and KB entities and relations.
Key Terms

- **Question Answering (QA):** finding answers to questions posed in natural language
 - Current QA Approaches: before, it required a pipeline of multiple ML modules
 - Now, the shift is toward training end-end deep NN models
 - These models only use a single info source; either KB or text
- **Late fusion:** take each source separately and aggregate their predictions after they’re finished
- **Early fusion:** use 1 single model to extract answers from a question subgraph with both KB facts and text sentences

KB vs. Text Corpus

- **Criteria:** *coverage* of info and *difficulty* of extracting answers
- **Knowledge Base (KB):** store of information; low coverage but are easier to extract answers from since they’re constructed to be queried
 - $K = (V, E, R)$
 - $V =$ set of entities
 - $E =$ triplet of edges (s, r, o) to denote relation $r \in R$ that holds between $s, o \in V$
- **Text Corpus:** large text corpus’ have high coverage, but the information is represented in many different text patterns; hard for models to generalize and extract information easily
 - Text corpus $D = \{d_1, \ldots, d_{|D|}\}$ set of documents
 - Each $d_i = (w_1, \ldots, w_{|d_i|})$ sequence of words
Entities, links, and questions

Entity linking system
- \(L = \text{set of links (v, } d_p) \) connecting an entity \(v \in V \) with \(d_p \) (a word @ position \(p \))
- \(L_d = \text{set of all entity links in document } d \)

Natural language question
- \(q = (w_1, \ldots, w_{|q|}) \) set of words
- Extract its answers \(\{a\}_q \)
- From \(G = (K, D, L) \)

Process
1. Extract subgraph \(G_q \) from \(G \) which contains the answer w/high probability
2. Use GRAFT-Net to learn node representations in \(G_q \) conditioned on \(q \) to classify each node as answer or not answer
Process 1 - question subgraph (G_q) retrieval

- Use 2 parallel pipelines
 - One over KB: returns a set of entities
 - One over text corpus D: returns set of documents
- The 2 are combined with entity links to produce a full-connected graph
1 - KB Retrieval

1. Entity linking on question q to produce a set of seed entities = S_q
2. Run PPR (Personalized PageRank) to identify other possible answer entities
3. Average word vectors to compute a relation vector $v(r)$ from the surface form of the relation, question vector $v(q)$ from the question’s words; cosine similarity between these edge weights
4. Retain top E entities v_1 through v_E by PPR score + edges between them to add to G_q
2 - Text Retrieval

Used Wikipedia as dataset + retrieved text @ sentence level

1. Retrieve top 5 most relevant Wikipedia articles: using weighted bag-of-words model from DrQA
2. Populate a Lucene index with sentences from the articles
3. Retrieve top ranking sentences d_1, \ldots, d_d based on the question words
4. Add retrieved documents + any entities linked to them to G_q

* Lucene is a full-text search library in Java
Final composition of G_q

$G_q = (V_q, E_q, R^+)$

$V_q = \text{retrieved entities + documents} = \{v_1, \ldots, v_E\} \cup \{d_1, \ldots, d_D\}$

$E_q = \text{relations from } K \text{ among these entities + entity-links between documents and entities}$

$E_q = \{(s, o, r) \in E : s, o \in V_q, r \in R\} \cup \{(v, d_p, r_L) : (v, d_p) \in L_d, d \in V_q\}$

* r_L = special “linking” relation with $R^+ = R \cup \{r_L\}$
1. Label nodes in V_q: question q and answers $\{a_q\}$
 - $y_v = 1$ if $v \in \{a_q\}$
 - $y_v = 0$ otherwise for all $v \in V_q$

2. The task of QA becomes to:
 - Perform binary classification over the nodes of graph G_q
 - Use graph-propagation based models that learn node representations then perform classification of the nodes
 - Those models follow standard gather-apply-scatter paradigm to learn the node representation with homogeneous updates, i.e. treating all neighbors equally.
Graph-propagation based model

- Initialize node representations $h_v^{(0)}$

- For $l = 1, \ldots, L$ update $h_v^{(\theta)}$

- $N_r(v) =$ neighbors of v along incoming edges of type r

- Φ is a NN layer

- L = number of layers in the model; corresponds to the max length of the paths along which info should be propagated in the graph

- Once propagation is complete: use final layer representations $h_v^{(L)}$ to perform the desired task

- Desired task could be: link prediction in KB

\[
 h_v^{(l)} = \phi \left(h_v^{(l-1)}, \sum_{v' \in N_r(v)} h_{v'}^{(l-1)} \right)
\]
Key differences in GRAFT-Net

1. G_q contains heterogeneous nodes: some correspond to KB entities (symbolic objects) and others represent textual documents (variable-length sequences of words)

2. Want to condition the representation of nodes on the natural language question q
Node Initialization

Nodes corresponding to entities initialized using fixed-size vectors $h_v^{(0)} = x_v \in \mathbb{R}^n$

X_v can be pre-trained or random KB embeddings; $n = \text{embedding size}$

Document is represented with variable length $H_d^{(1)} \subseteq \mathbb{R}^{|d| \times n}$

Words $= (w_1, w_2, ..., w_{|d|})$ then its hidden representation $H_d^{(0)} = \text{LSTM}(w_1, w_2, ...)$ LSTM = long short-term memory unit

p-th row of $H_d^{(1)}$

Embedding of p-th word in document d @ layer l as $H_{d,p}^{(1)}$
Heterogeneous Updates

Entities: $M(v) = \{(d,p)\} = \text{set of positions } p \text{ in documents } d \text{ that correspond to a mention of entity } v$

- Update for entity nodes = single-layer feed-forward network (FFN) over concatenation of 4 states

$$h_v^{(l)} = \text{FFN} \left(\begin{bmatrix} h_v^{(l-1)} \\ h_q^{(l-1)} \end{bmatrix} \right)$$

$$= \sum_r \sum_{v' \in N_r(v)} \alpha_r \psi_r (h_{v'}^{(l-1)}) + \sum_{(d,p) \in M(v)} H_{d,p}^{(l-1)}$$
\[
\hat{h}_v^{(l)} = \text{FFN}\left(\left[\begin{array}{c}
h_v^{(l-1)} \\
h_q^{(l-1)}
\end{array}\right] + \sum_r \sum_{v' \in N_r(v)} \alpha_r^{v'} \rho_r(h_v^{(l-1)}) \sum_{(d,p) \in M(v)} H_{d,p}^{(l-1)}\right)\]

1st 2 terms = entity and question representation from previous layer

3rd term = aggregation of states from entity neighbors of the current node \(N_r(v)\)

- After scaling with attention weight \(\alpha_r^{v'}\)
- After applying relation specific transformations \(\rho_r\)

4th term = aggregation of all the states of all tokens that correspond to mentions of the entity \(v\) among the documents in subgraph
Variables

$\alpha_{r'} = $ attention weight, calculated using question + relation embeddings

$\psi_r = $ relation specific transformation

$x_r = $ relation vector for $r \in R_q$; update along an edge is

$$\psi_r(h_{v'}^{(l-1)}) = pr_{v'}^{(l-1)} \text{FFN} \left(x_r, h_{v'}^{(l-1)} \right).$$

$pr_{v'}^{(l-1)} = $ PageRank score used to control propagation of embeddings along paths starting @ seed nodes
Heterogeneous Updates

Documents: \(L(d,p) = \text{set of all entities linked to word @ position } p \text{ in document } d \)

Update in 2 steps

1. Aggregate over the entity states coming in @ each position separately

\[h_v^{(l-1)} \text{ normalized by } \# \text{ outgoing edges } @ v \]

2. Aggregate states within the document using an LSTM

\[H_{d}^{(l)} = \text{LSTM}(\tilde{H}_{d}^{(l)}) \]
Conditioning on the Question

Dependence on the question in 2 ways: attention over relations + personalized propagation

\[q = w_1^q, \ldots, w_{|q|}^q = \text{words of the question} \]

\[
 h_q^{(0)} = \text{LSTM}(w_1^q, \ldots, w_{|q|}^q)_{|q|} \in \mathbb{R}^n,
\]

In subsequent layers, \(h_q^{(1)} = \text{FFN} \left(\sum_{v \in S_q} h_v^{(l)} \right) \)
Attention over Relations

Attention weight computed using question + relation embeddings

\[\alpha^v_r = \text{softmax}(x_r^T h_q^{(l-1)}) \]

- Embeddings are propagated more along the edges that are relevant to the question
Directed Propagation

Many questions require multi-hop reasoning

Follows a path from seed node from question to the target answer node

Propagation starts @ seed entities S_q mentioned in question

PageRank scores $\text{pr}^{(1)}_v$; measure total weight of paths from seed entity to the current node
Directed Propagation

\[pr_v^{(0)} = \begin{cases}
\frac{1}{|S_q|} & \text{if } v \in S_q \\
0 & \text{o.w.}
\end{cases} \]

\[pr_v^{(l)} = (1 - \lambda)pr_v^{(l-1)} + \lambda \sum_r \sum_{v' \in N_r(v)} \alpha_{r}^{v'} pr_v^{(l-1)} \]

- Reuse the attention weights to ensure that nodes along relevant paths to the question receive high weight
- PageRank score used as a scaling factor when propagating embeddings along edges
Directed Propagation

- For $l = 1$, PageRank score = 0 for all entities except seed entities. Propagate outwards from those nodes.

- For $l = 2$, it’s non-zero for seed entities and their 1-hop neighbors -> only propagate along these edges.

Figure 3: Directed propagation of embeddings in GRAFT-Net. A scalar PageRank score $pr_v^{(l)}$ is maintained for each node v across layers, which spreads out from the seed node. Embeddings are only propagated from nodes with $pr_v^{(l)} > 0$.
Answer selection

Final representations $h_v^{(L)} \in \mathbb{R}^n$; used for binary classification to select answers

$$\Pr(v \in \{a\}_q | G_q, q) = \sigma(w^T h_v^{(L)} + b),$$

σ is the sigmoid function

- Training uses binary cross-entropy loss over these probabilities
Regularization via Fact Dropout

Want: model to learn a robust classifier

How: fact-dropout aka randomly drop edges from the graph during training (with probability p_θ)

Usually easier to extract answers from KB than from documents, so model tends to rely on KB more
Experiment Setup

1. **Datasets:** WikiMovies-10K and WebQuestionsSP

2. **Compared models:** KV-KB [Key Value Memory Networks model; only KB], KV-EF [same model with access to text as well], GN-KB [GRAFT-Net model; no text], GN-LF [late fusion version of GRAFT-Net; did 1 with only text and 1 with only KB], GN-EF [main model, early fusion], GN-EF+LF [ensemble over GN-EF and GN-LF models]
Results

1. Best performance was GN-EF+LF aka the ensemble of early and late fusion
2. Adding text adds a great benefit to performance
3. That benefit diminishes as KB completeness reaches 100%
<table>
<thead>
<tr>
<th>Model</th>
<th>Text Only</th>
<th>KB + Text</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10 %</td>
</tr>
<tr>
<td>WikiMovies-10K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KV-KB</td>
<td>–</td>
<td>15.8 / 9.8</td>
</tr>
<tr>
<td>KV-EF</td>
<td>50.4 / 40.9</td>
<td>53.6 / 44.0</td>
</tr>
<tr>
<td>GN-KB</td>
<td>–</td>
<td>19.7 / 17.3</td>
</tr>
<tr>
<td>GN-LF</td>
<td>74.5 / 65.4</td>
<td>78.7 / 68.5</td>
</tr>
<tr>
<td>GN-EF</td>
<td>73.2 / 64.0</td>
<td>75.4 / 66.3</td>
</tr>
<tr>
<td>GN-EF+LF</td>
<td>79.0 / 66.7</td>
<td>84.6 / 74.2</td>
</tr>
<tr>
<td>WebQuestionsSP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KV-KB</td>
<td>–</td>
<td>12.5 / 4.3</td>
</tr>
<tr>
<td>KV-EF</td>
<td>23.2 / 13.0</td>
<td>24.6 / 14.4</td>
</tr>
<tr>
<td>GN-KB</td>
<td>–</td>
<td>15.5 / 6.5</td>
</tr>
<tr>
<td>GN-LF</td>
<td>29.8 / 17.0</td>
<td>39.1 / 25.9</td>
</tr>
<tr>
<td>GN-EF</td>
<td>25.3 / 15.3</td>
<td>31.5 / 17.7</td>
</tr>
<tr>
<td>GN-EF+LF</td>
<td>33.3 / 19.3</td>
<td>42.5 / 26.7</td>
</tr>
</tbody>
</table>
Effect of Novel Ideas

1. Heterogeneous Updates
 - Tested a non-heterogeneous version as well
 - Cannot disambiguate different entities mentioned in the same document
 - Non-heterogeneous is consistently worse than the heterogeneous

2. Conditioning on the Question
 - Both directed propagation method and attention over relations led to better performance

3. Fact Dropout
 - Moderate levels improve performance (~0.2)
Conclusion

GRAFT-Net classifies nodes in subgraphs with both KB entities and text documents

Achieves performance competitive to state-of-the-art methods; outperforms baselines when using text + incomplete KB
Future Work

1. Extend GRAFT-Nets to pick spans of text as answers, not just entities
2. Improve the subgraph retrieval process