Generating and designing DNA with deep generative models Nathan Killoran, Leo J. Lee, Andrew Delong, David Duvenaud, Brendan J. Frey

arxiv preprint 2017

Reviewed by : Jack Lanchantin

¹Department of Computer Science, University of Virginia https://qdata.github.io/deep2Read/

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Intro

Generative Design of DNA

GAN Generative Optimization Joint Method of GAN and Activation Maximization

Experiments

- Generative DNA Model

 1.1: Exploring the Latent Encoding

 2: Capturing Exon Splice Site Signa
- 2. Designing DNA

Generative models are good for many uses, including:

- Simulating data
- Exploring the space of possible data configurations
- Tuning generated data to have specific properties

2/32

Inventing novel, unseen configurations

This Paper

- Goal: create synthetic DNA sequences and tune these sequences to have certain desired properties.
- Methods:
 - 1. GAN-based deep generative network for the creation of new DNA sequences
 - 2. Activation maximization method for designing sequences with desired properties

3/32

3. Joint method of 1 & 2

Intro

Generative Design of DNA

GAN

Generative Optimization

Joint Method of GAN and Activation Maximization

Experiments

1. Generative DNA Model

1.1: Exploring the Latent Encoding

1.2: Capturing Exon Splice Site Signals

2. Designing DNA

Intro

Generative Design of DNA GAN

Generative Optimization

Joint Method of GAN and Activation Maximization

Experiments

- 1. Generative DNA Model
 - 1.1: Exploring the Latent Encoding
 - 1.2: Capturing Exon Splice Site Signals
- 2. Designing DNA

GAN Generator

- ▶ Generator G transforms continuous variable z into synthetic data, G(z), where z is a high-level latent encoding for the data
- Discriminator D produces a continuous valued number output D(x) to score between real and generated output.
- Discriminator's training objective:

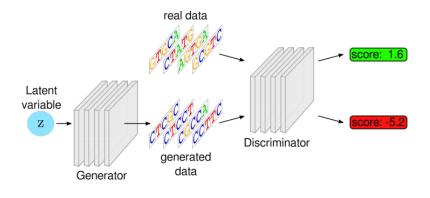
$$max_{\theta_D} \mathcal{L}_{disc} = max_{\theta_D} [\mathbb{E}_{x \sim P_{real}} D(x) - \mathbb{E}_{z \sim P_z} D(G(z))]$$
(1)

Generator's training objective:

$$max_{\theta_{G}}\mathcal{L}_{gen} = max_{\theta_{G}}[\mathbb{E}_{z \sim P_{z}}D(G(z))]$$
(2)

GAN Generator for DNA

Wasserstein GAN (Arjovsky et al.): discriminator's output is adapted to an arbitrary score $D(x) \in \mathbb{R}$, and an optimization penalty is introduced to bound the discriminators gradients, making the model more stable and easier to train



Intro

Generative Design of DNA

GAN

Generative Optimization

Joint Method of GAN and Activation Maximization

Experiments

- 1. Generative DNA Model
 - 1.1: Exploring the Latent Encoding
 - 1.2: Capturing Exon Splice Site Signals
- 2. Designing DNA

Generative Optimization

 Instead of generating realistic-looking data, the focus in this alternative approach is to synthesize data which strongly manifests certain desired properties

Activation Maximization for DNA

- Let P be a function which predicts a target property t = P(x) (e.g, x is a dog)
- ▶ P can be generalized to some combination of explicit functions {f_i} and learned functions {f_{θi}}:

$$P(x) = \sum_{i} \alpha_{i} f_{i}(x) + \sum_{j} \beta_{j} f_{\theta_{j}}(x)$$
(3)

Activation Maximization: starting with an arbitrary x, change x to maximize t by following the gradient w.r.t x:

$$x \to x + \epsilon \nabla_x t \tag{4}$$

Final sequence can be found by taking a softmax over the 4 characters at each position, and taking an argmax.

Intro

Generative Design of DNA

GAN Generative Optimization Joint Method of GAN and Activation Maximization

Experiments

- 1. Generative DNA Model
 - 1.1: Exploring the Latent Encoding
 - 1.2: Capturing Exon Splice Site Signals
- 2. Designing DNA

Joint method

- One drawback with activation maximization is that it ignores realism of data in its pursuit of optimal attributes
- E.g., such images are often exaggerated or nightmarish, with the target property manifesting in unrealistic ways

Flamingo

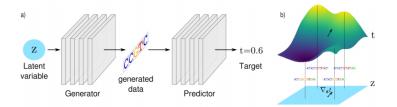
Joint method: Plug & Play Generative Network

- "plug & play generative networks" (Nguyen et. al.): combine activation maximization with a generative model
- Idea: Let a generator capture the generic high-level structure of data, while using predictors to fine-tune specific properties

Joint method: Plug & Play Generative Network

This joint architecture requires two components:

- Generator G transforms latent codes z into synthetic data x (e.g. a trained GAN generator), and a predictor P, mapping data x to the corresponding attributes t = P(x).
- ▶ The two modules are plugged back-to-back, so that they form a concatenated transformation $z \rightarrow x \rightarrow t$



イロト 不得下 イヨト イヨト 二日

Joint method: Plug & Play Generative Network

- Goal is still the same as activation maximization: tune data to have desired properties
- To do this, we calculate the gradient of the prediction t with respect to the generators latent codes z:

$$\nabla_z t = \sum_i \frac{\partial t}{\partial x_i} \frac{\partial x_i}{\partial z} = \sum_i \frac{\partial P(x)}{\partial x_i} \frac{\partial G_i(z)}{\partial z}$$
(5)

Intro

Generative Design of DNA

GAN Generative Optimization Joint Method of GAN and Activation Maximization

Experiments

Generative DNA Model

 Exploring the Latent Encoding
 Capturing Exon Splice Site Signal

2. Designing DNA

Intro

Generative Design of DNA

GAN Generative Optimization Joint Method of GAN and Activation Maximization

Experiments

1. Generative DNA Model

- 1.1: Exploring the Latent Encoding
- 1.2: Capturing Exon Splice Site Signals
- 2. Designing DNA

Experiment 1: Generative DNA Model

 Perform several experiments intended to more fully understand the capabilities of the DNA generator architecture

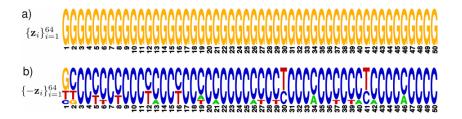
Exploring the Latent Encoding

- Trained a WGAN model on a dataset of 4.6M
 50-nucleotide-long sequences encompassing chr 1 of hg38
- Consider interpolation between points in the latent space.
 Show how the generated data varies as we traverse a straight line between two arbitrary latent coordinates z₁ and z₂.

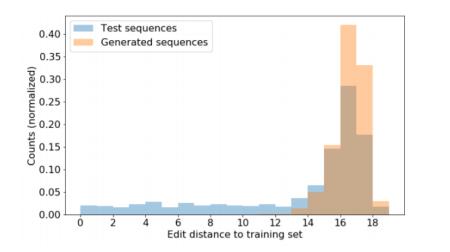


1.1: Exploring the Latent Encoding

- Reflection in the latent space: $z \rightarrow -z$
- ► Fix a sequence x* (e.g. all "G") and find, via gradient-based search, 64 different latent points z_i which each generate x*, i.e., G(z_i) = x* for all z_i
- Reflect each of these latent points and decode the corresponding generated sequences



1.1 Verification of GAN: Distance to training sequences

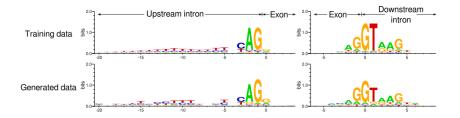


1.2: Capturing Exon Splice Site Signals

- Trained GAN on 116k 500-nt-long human genomic sequences, each containing exactly one exon (varying between 50-400 nt).
- Included an additional flag such that nucleotides within an exon = 1, and non-exon positions = 0
- Model must simultaneously learn to separate exons while also capturing the statistical information of nucleotides relative to these exon borders (splice sites)

1.2: Capturing Exon Splice Site Signals

- Used the generated flag positions to align the corresponding generated sequences (taking the first/last value above 0.5 as the start/end of the exon)
- Model has picked up on various splice site signals



Intro

Generative Design of DNA

GAN Generative Optimization Joint Method of GAN and Activation Maximization

Experiments

Generative DNA Model

 1.1: Exploring the Latent Encoding
 1.2: Capturing Exon Splice Site Signals

2. Designing DNA

Experiment 2: Designing DNA

- Run several experiments for designing DNA sequences
- The running theme will be DNA/protein binding

2.1: Explicit Predictor (PWM): Motif Matching

- Goal: design DNA sequences using an explicit biologically motivated predictor function
- Predictor Function:
 - 1. 1-D convolution scans across the data, computing the inner product of a fixed PWM with every length-K subsequence
 - 2. Select the convolutional output with the highest value to get the final score for the sequence
- Used the joint method, employing a generator trained on sequences from human chr 1

a)

GGIATICA

b) TGAGAGTGATGTATT<u>GGAATTGA</u>TGCCTCACCTCTGCTTGCAGACTGTCA <u>GGAATGAA</u>CTGGGGAGACAGGCCCAGA<u>GGAATTGA</u>GAAAGTAATGAGCAC <u>GCCCTGGGTTTTAA</u>GAAATACTGTTGCATCAGGGCAAATGTAAGATTTTG TTTTGTTTGAGATCTGTGGGGGTATGCT<u>GGAATTAA</u>AGTCTGGACTACCAC CTGATACTGAATGCAGATTTGAAGAACAAAG<u>GGTATTAA</u>AACACATGCTT GATCCCCAAGTGT<u>GGAATTGA</u>GAAGGAAGCTGGAGAATCCCCAAACTCTG CAGCCACATCAGCTTACCTAA<u>GGAAGTGA</u>TGTGTTTTAAAACCAGCTTTG TAGAATTTTTCTT<u>GGTATTAA</u>TGATGATCTAGGCTTACACAGGGACATCA GACATTGCTTAGTCTGAGGGATACAGTGGGGGAGTG<u>GGTATTAA</u>AATCTCC

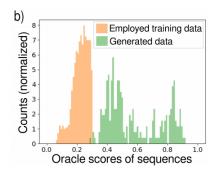
। 19/32 2.2: Learned Predictor (DeepBind): Protein Binding

- ► Goal: Explore the use of a predictor model which has been learned from data → Design new sequences which have high binding scores
- Oracle model To simulate the process of evaluating candidate sequences, use a proxy model which is trained on Chip-Seq data. This model can be queried with new designed sequences to gauge their expected binding score

2.2: Learned Predictor: Protein Binding

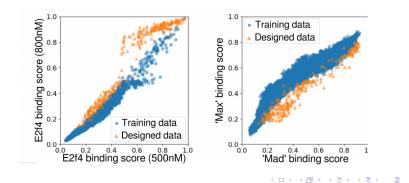
GAN for generating new sequences

 Using only samples with oracle scores less than 40% binding likelihood, train a gan to generate new sequences, and then test the generated sequences on the oracle.



2.2: Learned Predictor: Protein Binding Optimizing Multiple Properties

- 1. Design DNA sequences which preferentially bind to one protein in a family but not the other
- 2. Similarly, design sequences where two predictors model binding of the same protein, but under two different molecular concentrations



Future Directions

- Train an encoder E which maps data back to latent codes:
 E(x) = z, making it easier to find latent encodings for specific sequences
- Build a conditional GAN model and combine it with the joint architecture - allowing some properties to remain fixed while others were tuned
- Domain adaptation. E.g. provide a map of where we want certain components (introns, exons, promoters, enhancers) to be, and a generative model would dream up plausible sequences with the desired properties

Intro

Generative Design of DNA

GAN Generative Optimization Joint Method of GAN and Activation Maximization

Experiments

Generative DNA Model

 Exploring the Latent Encoding
 Capturing Exon Splice Site Signal

2. Designing DNA

RNNs

Training: maximize the likelihood of predicting the next char **Generating**: Sample the model's prediction at each time t and feed back as the input to the next step t + 1 (arbitrarily long seqs)

Can be trained to generate sequences in conditional manner, producing outputs which have some desired property. Do this by appending extra labelled data y (e.g. sentiment) to the inputs x_t.

RNNs

Suitability for DNA

- No successful variant of activation maximization or plug & play that operates on RNNs.
- Also, without a learned latent encoding, we are limited to tune a conditional RNN for which we explicitly train the model for (e.g. no flipping the sequence).

Deep Autoregressive Models

Training

Instead of feeding inputs only one at a time and relying on the network to memorize past inputs, we can alternatively show it the entire past history up to that point

Generating

- Similar to RNNs, feed the history of previous predictions as input for each time step.
- Can also be built as conditional models, enabling the generation of sequences with tailored properties.

Deep Autoregressive Models

Suitability for DNA: Similar to RNNs, they require supervised training with a labelled dataset and that these properties must be chosen beforehand and built in during training.

- In contrast to the 2 previous models, VAEs have the ability to learn a controllable latent representation of data in an unsupervised manner
- By changing the latent variable z, we can modify the synthetic data that the model generates.

- Encoder *E*: transforms data to latent variables, $x \rightarrow z$
- ► Decoder (or generator) G: transforms latent variables to generated data, z → x'
- VAEs use probability distributions rather than deterministic functions to model these transformations
 - To encode, we sample z from a distribution q(z|x)
 - To decode, we do likewise for x from a distribution p(x|z).
 - q and p are modelled via DNNs.

Training:

- Goal: make the error from $x \to z \to x'$ as small as possible
- For VAEs, this reconstruction error is given by

$$\mathcal{L}_{recon} := \mathbb{E}_{z \sim q(z|x)}[-logp(x|z)]$$
(6)

- In order to reconstruct successfully, the model must learn how to capture the essential properties of the data within the latent variable z
- Regularization encourages the latent codes to vary smoothly. This is captured by a KL divergence term between q(z|x) and a fixed prior on the latent space p(z) (e.g. normal)
- The full VAE objective which is minimized during training is

$$\mathcal{L}_{recon} + D_{KL}(q(z|x)||p(z)) \tag{7}$$

Suitability for DNA:

- It has been observed that if we use a strong decoder network, such as an RNN, VAEs will exhibit a preference to push the KL divergence term to zero
- This causes the latent code to be ignored and the generative process is handled completely by the decoder
- Without learning a meaningful latent code, such models are no better than a standard RNN

All Methods

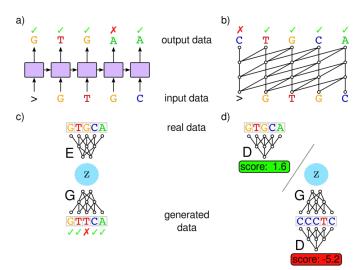


Figure 12: Generative neural network models shown with short example sequences: a) Recurrent neural network; b) PixelCNN; c) Variational Autoencoder; d) Generative Adversarial Network. A generic starting character $(e.g., \succ)$ is used to prompt the RNN and PixelCNN at the first time step.