Meta-Learning with Memory-Augmented Neural Networks Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, Timothy Lillicrap

ICML 2016

Reviewed by : Jack Lanchantin

¹Department of Computer Science, University of Virginia https://qdata.github.io/deep2Read/

Meta-learning

Scenario in which an agent learns at two levels

- Rapid learning occurs within a task, for example, when learning to accurately classify within a particular dataset.
- This learning is guided by knowledge accrued more gradually across tasks, which captures the way in which task structure varies across target domains.
- Given its two-tiered organization, meta-learning is often described as "learning to learn."

Meta-learning Task Methodology

- Usually we try to choose parameters θ to minimize loss L across dataset D.
- In meta-learning, we choose parameters to reduce the expected loss across a distribution of datasets p(D):

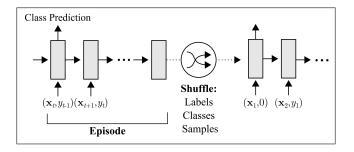
$$\theta^* = \operatorname{argmin}_{\theta} E_{D \sim p(D)}[\mathcal{L}(D; \theta)]$$

・ロン ・四 と ・ ヨ と ・ ヨ と … ヨ

3/10

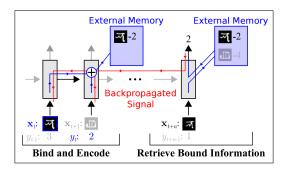
Setup for This Paper

- Dataset $D = \{d_t\}_{t=1}^T = \{(x_t, y_t)\}_{t=1}^T$
- ► At each timestep t, the network receives input x_t as well as the label of the previous example, y_{t-1}:
 - $(x_1, \text{ null}), (x_2, y_1), \dots, (x_T, y_{T-1})$
- Labels, classes, and samples are shuffled in each training "episode".



Memory-Augmented Neural Nets (MANNs)

Learns to hold samples in memory until the correct labels are shown, after which they can be bound and stored for later use.



MANN Reading

Given input x_t , controller (LSTM) produces key k_t .

 M_t is addressed using cosine similarity:

$$K(k_t, \boldsymbol{M}_t(i)) = \frac{k_t \cdot \boldsymbol{M}_t(i)}{||k_t|| \, ||c_t(i)||},$$

which is used to produce read-weight vector w_r^t :

$$w_r^t(i) \leftarrow \frac{exp(K(\boldsymbol{k}_t, \boldsymbol{M}_t(i)))}{\sum_j K(\boldsymbol{k}_t, \boldsymbol{M}_t(j))}$$

A certain memory r_t is read using this read-weight vector:

$$\mathbf{r}_t \leftarrow \sum_i w_r^t(i) \mathbf{M}_t(i)$$

MANN Writing

Least Recently Used Access (LRUA)

LRUA: Content-based writer that writes memories to either the least used or most recently used memory location.

Usage weights:

$$\boldsymbol{w}_t^u \leftarrow \gamma \boldsymbol{w}_{t-1}^u + \boldsymbol{w}_t^r + \boldsymbol{w}_w^w$$

Least used weight:

$$w_t^{lu}(i) = \begin{cases} 0, & \text{if } w_t^u(i) > m(\boldsymbol{w}_t^u, n) \\ 1, & \text{if } w_t^u(i) \le m(\boldsymbol{w}_t^u, n) \end{cases}$$

def: $m(\mathbf{v}, n) = n^{th}$ smallest element of vector \mathbf{v}

MANN Writing

Least Recently Used Access (LRUA)

Write weight \boldsymbol{w}_t^w :

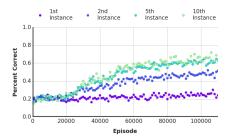
$$\boldsymbol{w}_{t}^{w} \leftarrow \sigma(\alpha) \boldsymbol{w}_{t-1}^{r} + (1 - \sigma(\alpha)) \boldsymbol{w}_{t-1}^{lu}$$

Writing to **M**

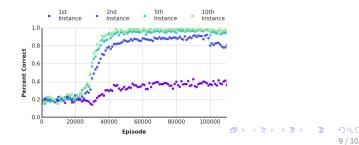
$$\boldsymbol{M}_t(i) \leftarrow \boldsymbol{M}_{t-1}(i) + w_t^w(i) \boldsymbol{k}_t, \forall i$$

Omniglot Experiment Results

LSTM



MANN



Omniglot Experiment Results

Table 1. Test-set classification accuracies for humans compared to machine algorithms trained on the Omniglot dataset, using one-hot encodings of labels and five classes presented per episode.

	INSTANCE (% CORRECT)					
MODEL	1 ST	2^{ND}	3 RD	4^{TH}	5 TH	10^{TH}
Human Feedforward				71.8 19.9		
LSTM MANN	24.4	49.5	55.3	61.0 92.6	63.6	62.5